About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 485837, 7 pages
http://dx.doi.org/10.1155/2013/485837
Research Article

Production of the Quinone-Methide Triterpene Maytenin by In Vitro Adventitious Roots of Peritassa campestris (Cambess.) A.C.Sm. (Celastraceae) and Rapid Detection and Identification by APCI-IT-MS/MS

1Núcleo de Bioensaios, Biossíntese e Ecofisiologia de Produtos Naturais, Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista, 14801-970 Araraquara, SP, Brazil
2Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, 18610-307 Botucatu, SP, Brazil
3Departamento de Biotecnologia Vegetal, Universidade de Ribeirão Preto, 14096-900, Ribeirão Preto, SP, Brazil

Received 24 May 2013; Accepted 27 August 2013

Academic Editor: Regina Maria Barreto Cicarelli

Copyright © 2013 Tiago Antunes Paz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. B. Buffa-Filho, J. Corsino, V. S. Bolzani, M. Furlan, A. M. S. Pereira, and S. C. França, “Quantitative determination of cytotoxic Friedo-nor-oleanane derivatives from five morphological types of Maytenus ilicifolia (Celastraceae) by reverse-phase high-performance liquid chromatography,” Phytochemical Analysis, vol. 13, no. 2, pp. 75–78, 2002. View at Publisher · View at Google Scholar · View at Scopus
  2. J. Corsino, P. R. F. de Carvalho, M. J. Kato et al., “Biosynthesis of friedelane and quinonemethide triterpenoids is compartmentalized in Maytenus aquifolium and Salacia campestris,” Phytochemistry, vol. 55, no. 7, pp. 741–748, 2000. View at Publisher · View at Google Scholar · View at Scopus
  3. D. H. Kim, E. K. Shin, Y. H. Kim et al., “Suppression of inflammatory responses by celastrol, a quinone methide triterpenoid isolated from Celastrus regelii,” European Journal of Clinical Investigation, vol. 39, no. 9, pp. 819–827, 2009. View at Publisher · View at Google Scholar · View at Scopus
  4. V. A. dos Santos, D. P. dos Santos, I. Castro-Gamboa, M. V. B. Zanoni, and M. Furlan, “Evaluation of antioxidant capacity and synergistic associations of quinonemethide triterpenes and phenolic substances from Maytenus ilicifolia (Celastraceae),” Molecules, vol. 15, no. 10, pp. 6956–6973, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. A. H. Jeller, D. H. S. Silva, L. M. Liao, V. S. Bolzani, and M. Furlan, “Antioxidant phenolic and quinonemethide triterpenes from Cheiloclinium cognatum,” Phytochemistry, vol. 65, no. 13, pp. 1977–1982, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. F. P. Gullo, J. C. O. Sardi, V. A. F. F. M. dos Santos, et al., “Antifungal activity of maytenin and pristimerin,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 340787, 6 pages, 2012. View at Publisher · View at Google Scholar
  7. V. A. F. F. M. dos Santos, K. M. Leite, M. C. Siqueira, et al., “Antiprotozoal activity of quinonemethide triterpenes from Maytenus ilicifolia (Celastraceae),” Molecules, vol. 18, no. 1, pp. 1053–1062, 2013.
  8. W. N. Setzer, M. T. Holland, C. A. Bozeman et al., “Isolation and frontier molecular orbital investigation of bioactive quinone-methide triterpenoids from the bark of Salacia petenensis,” Planta Medica, vol. 67, no. 1, pp. 65–69, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. P. R. F. Carvalho, D. H. S. Silva, V. S. Bolzani, and M. Furlan, “Antioxidant quinonemethide triterpenes from Salacia campestris,” Chemistry and Biodiversity, vol. 2, no. 3, pp. 367–372, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. X. Cui, D. Chakrabarty, E. Lee, and K. Paek, “Production of adventitious roots and secondary metabolites by Hypericum perforatum L. in a bioreactor,” Bioresource Technology, vol. 101, no. 12, pp. 4708–4716, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. X. Cui, H. N. Murthy, Y. Jin, Y. Yim, J. Kim, and K. Paek, “Production of adventitious root biomass and secondary metabolites of Hypericum perforatum L. in a balloon type airlift reactor,” Bioresource Technology, vol. 102, no. 21, pp. 10072–10079, 2011. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. A. Gómez-Aguirre, A. Zamilpa, M. González-Cortazar, and G. Trejo-Tapia, “Adventitious root cultures of Castilleja tenuiflora Benth. as a source of phenylethanoid glycosides,” Industrial Crops and Products, vol. 36, no. 1, pp. 188–195, 2012. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Yakabe, M. Terato, A. Higa, K. Yamada, and Y. Kitamura, “Iron availability alters ascorbate-induced stress metabolism in Glehnia littoralis root cultures,” Phytochemistry, vol. 74, pp. 100–104, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. R. Seo, W. D. Seo, B. Pyun et al., “Radiosensitization by celastrol is mediated by modification of antioxidant thiol molecules,” Chemico-Biological Interactions, vol. 193, no. 1, pp. 34–42, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Yelani, A. A. Hussein, and J. J. M. Meyer, “Isolation and identification of poisonous triterpenoids from Elaeodendron croceum,” Natural Product Research, vol. 24, no. 15, pp. 1418–1425, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. O. Ngassapa, D. D. Soejarto, J. M. Pezzuto, and N. R. Farnsworth, “Quinone-methide triterpenes and salaspermic acid from Kokoona ochracea,” Journal of Natural Products, vol. 57, no. 1, pp. 1–8, 1994. View at Scopus
  17. H. Morita, Y. Hirasawa, A. Muto, T. Yoshida, S. Sekita, and O. Shirota, “Antimitotic quinoid triterpenes from Maytenus chuchuhuasca,” Bioorganic and Medicinal Chemistry Letters, vol. 18, no. 3, pp. 1050–1052, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. S. M. Oramas-Royo, H. Chávez, P. Martín-Rodríguez, L. Fernández-Pérez, Á. G. Ravelo, and A. Estévez-Braun, “Cytotoxic triterpenoids from Maytenus retusa,” Journal of Natural Products, vol. 73, no. 12, pp. 2029–2034, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Lloyd and B. McCown, “Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture,” in Proceedings of the International Plant Propagators' Society (IPPS '80), pp. 421–427, Carlisle, Pa, USA, 1980.
  20. T. Murashige and F. Skoog, “A revised medium for rapid growth and bioassays with tobacco tissue cultures,” Physiologia Plantarum, vol. 15, no. 3, pp. 473–497, 1962.
  21. P. M. Brown, M. Moir, R. H. Thomson, T. J. King, V. Krishnamoorthy, and T. R. Seshadri, “Tingenone and hydroxytingenone, triterpenoid quinone methides from Euonymus tingens,” Journal of the Chemical Society, Perkin Transactions 1, no. 22, pp. 2721–2725, 1973. View at Scopus
  22. S. A. Khalid, G. M. Friedrichsen, S. B. Christensen, A. El Tahir, and G. M. Satti, “Isolation and characterization of pristimerin as the antiplasmodial and antileishmanial agent of Maytenus senegalensis (Lam.) Exell,” Arkivoc, vol. 2007, no. 9, pp. 129–134, 2007. View at Scopus
  23. C. Niampoka, R. Suttisri, R. Bavovada, H. Takayama, and N. Aimi, “Potentially cytotoxic triterpenoids from the root bark of Siphonodon celastrineus Griff,” Archives of Pharmacal Research, vol. 28, no. 5, pp. 546–549, 2005. View at Scopus
  24. E. Rodrigues-Filho, F. A. P. Barros, J. B. Fernandes, and R. Braz-Filho, “Detection and identification of quinonemethide triterpenes in Peritassa campestris by mass spectrometry,” Rapid Communications in Mass Spectrometry, vol. 16, no. 6, pp. 627–633, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. J. Corsino, A. C. Alecio, M. L. Ribeiro et al., “Quantitative determination of maitenin and 22β-hydroxymaitenin in callus of Maytenus aquifolium (Celastraceae) by reverse phase high performance liquid chromatography,” Phytochemical Analysis, vol. 9, no. 5, pp. 245–247, 1998.
  26. M. Z. Saiman, N. R. Mustafa, A. E. Schulte, R. Verpoorte, and Y. H. Choi, “Induction, characterization, and NMR-based metabolic profiling of adventitious root cultures from leaf explants of Gynura procumbens,” Plant Cell, Tissue and Organ Culture, vol. 109, no. 3, pp. 465–475, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. W. Buffa-Filho, V. B. Bolzani, M. Furlan, S. V. Pereira, A. M. S. Pereira, and S. C. Françab, “In vitro propagation of Maytenus ilicifolia (Celastraceae) as potential source for antitumoral and antioxidant quinomethide triterpenes production. A rapid quantitative method for their analysis by reverse-phase high-performance liquid chromatography,” Arkivoc, vol. 2004, no. 6, pp. 137–146, 2004. View at Scopus
  28. P. Baskaran, B. Ncube, and J. van Staden, “In vitro propagation and secondary product production by Merwilla plumbea (Lindl.) Speta,” Plant Growth Regulation, vol. 67, no. 3, pp. 235–245, 2012. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Grover, J. S. Yadav, R. Biswas et al., “Production of monoterpenoids and aroma compounds from cell suspension cultures of Camellia sinensis,” Plant Cell, Tissue and Organ Culture, vol. 108, no. 2, pp. 323–331, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. M. Lucchesini, A. Bertoli, A. Mensuali-Sodi, and L. Pistelli, “Establishment of in vitro tissue cultures from Echinacea angustifolia D.C. adult plants for the production of phytochemical compounds,” Scientia Horticulturae, vol. 122, no. 3, pp. 484–490, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. C. Chaban, F. Waller, M. Furuya, and P. Nick, “Auxin responsiveness of a novel cytochrome p450 in rice coleoptiles,” Plant Physiology, vol. 133, no. 4, pp. 2000–2009, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. H. Wu, J. Guo, S. Chen et al., “Recent developments in qualitative and quantitative analysis of phytochemical constituents and their metabolites using liquid chromatography-mass spectrometry,” Journal of Pharmaceutical and Biomedical Analysis, vol. 72, pp. 267–291, 2013.