About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 487610, 13 pages
http://dx.doi.org/10.1155/2013/487610
Research Article

The Anti-Arthritic and Immune-Modulatory Effects of NHAG: A Novel Glucosamine Analogue in Adjuvant-Induced Arthritis

1H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
2Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan

Received 16 April 2013; Revised 14 June 2013; Accepted 27 June 2013

Academic Editor: Vickram Ramkumar

Copyright © 2013 Syed Uzair A. Shah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. A. Baker, J. Barth, R. Chang, L. M. Obeid, and G. S. Gilkeson, “Genetic sphingosine kinase 1 deficiency significantly decreases synovial inflammation and joint erosions in murine TNF-α-induced arthritis,” Journal of Immunology, vol. 185, no. 4, pp. 2570–2579, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Yanni, A. Whelan, C. Feighery, and B. Bresnihan, “Synovial tissue macrophages and joint erosion in rheumatoid arthritis,” Annals of the Rheumatic Diseases, vol. 53, no. 1, pp. 39–44, 1994. View at Scopus
  3. V. Lo and S. E. Meadows, “When should COX-2 selective NSAIDs be used for osteoarthritis and rheumatoid arthritis?” Journal of Family Practice, vol. 55, no. 3, pp. 260–262, 2006. View at Scopus
  4. M. Buffum and J. C. Buffum, “Nonsteroidal anti-inflammatory drugs in the elderly,” Pain Management Nursing, vol. 1, no. 2, pp. 40–50, 2000. View at Scopus
  5. J. E. Biskupiak, D. I. Brixner, K. B. Howard, and G. M. Oderda, “Gastrointestinal complications of over-the-counter nonsteroidal antiinflammatory drugs,” Journal of Pain and Palliative Care Pharmacotherapy, vol. 20, no. 3, pp. 7–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. A. G. Johnson and R. O. Day, “The problems and pitfalls of NSAID therapy in the elderly (Part I),” Drugs & Aging, vol. 1, no. 2, pp. 130–143, 1991. View at Scopus
  7. A. Whelton and C. W. Hamilton, “Nonsteroidal anti-inflammatory drugs: effects on kidney function,” Journal of Clinical Pharmacology, vol. 31, no. 7, pp. 588–598, 1991. View at Scopus
  8. E. Santana-Sabagun and M. H. Weisman, “Nonsteroidal anti-inflammatory drugs,” in Kelly’s Textbook of Rheumatology, S. Ruddy, J. E. D. Harris, C. B. Sledge, R. C. Budd, and J. S. Sergent, Eds., vol. 1, pp. 799–822, W.B. Saunders Company, Philadelphia, Pa, USA, 2001.
  9. T. Anastassiades, R. Chopra, C. Law, and E. Wong, “In vitro suppression of transforming growth factor-β induced stimulation of glycosaminoglycan synthesis by acetylsalicylic acid and its reversal by misoprostol,” Journal of Rheumatology, vol. 25, no. 10, pp. 1962–1967, 1998. View at Scopus
  10. T. Pincus, G. Ferraccioli, T. Sokka et al., “Evidence from clinical trials and long-term observational studies that disease-modifying anti-rheumatic drugs slow radiographic progression in rheumatoid arthritis: updating a 1983 review,” Rheumatology, vol. 41, no. 12, pp. 1346–1356, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. P. Raaschou, J. F. Simard, M. Holmqvist, and J. Askling, “Rheumatoid arthritis, anti-tumour necrosis factor therapy, and risk of malignant melanoma: nationwide population based prospective cohort study from Sweden,” British Medical Journal, vol. 346, p. 11939, 2013.
  12. F. Wolfe, “Adverse drug reactions of DMARDs and DC-ARTs in rheumatoid arthritis,” Clinical and Experimental Rheumatology, vol. 15, no. 17, pp. S75–S81, 1997. View at Scopus
  13. K. Chakravarty, H. McDonald, T. Pullar et al., “BSR/BHPR guideline for disease-modifying anti-rheumatic drug (DMARD) therapy in consultation with the British Association of Dermatologists,” Rheumatology, vol. 47, no. 6, pp. 924–925, 2008. View at Scopus
  14. J. W. Alford and B. J. Cole, “Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options,” American Journal of Sports Medicine, vol. 33, no. 2, pp. 295–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Lippiello, M. Han, and T. P. Henderson, “Protective effect of the chondroprotective agent Cosequin DS on bovine articular cartilage exposed in vitro to non-steroidal antiinflammatory agents,” Veterinary Therapeutics, vol. 3, pp. 128–135, 2002. View at Scopus
  16. T. C. Laurent, J. R. E. Fraser, U. B. G. Laurent, and A. Engstrom-Laurent, “Hyaluronan in inflammatory joint disease,” Acta Orthopaedica Scandinavica, Supplement, vol. 66, no. 266, pp. 116–120, 1995. View at Scopus
  17. K. Pavelká, J. Gatterová, M. Olejarová, S. Machacek, G. Giacovelli, and L. C. Rovati, “Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study,” Archives of Internal Medicine, vol. 162, no. 18, pp. 2113–2123, 2002. View at Publisher · View at Google Scholar · View at Scopus
  18. J. Y. Reginster, R. Deroisy, L. C. Rovati et al., “Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial,” The Lancet, vol. 357, no. 9252, pp. 251–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  19. T. R. Oegema Jr., L. B. Deloria, J. D. Sandy, and D. A. Hart, “Effect of oral glucosamine on cartilage and meniscus in normal and chymopapain-injected knees of young rabbits,” Arthritis and Rheumatism, vol. 46, no. 9, pp. 2495–2503, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Derfoul, A. D. Miyoshi, D. E. Freeman, and R. S. Tuan, “Glucosamine promotes chondrogenic phenotype in both chondrocytes and mesenchymal stem cells and inhibits MMP-13 expression and matrix degradation,” Osteoarthritis and Cartilage, vol. 15, no. 6, pp. 646–655, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. F. McCarty, “The neglect of glucosamine as a treatment for osteoarthritis—a personal perspective,” Medical Hypotheses, vol. 42, no. 5, pp. 323–327, 1994. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Matsuno, H. Nakamura, K. Katayama et al., “Effects of an oral administration of glucosamine-chondroitin-quercetin glucoside on the synovial fluid properties in patients with osteoarthritis and rheumatoid arthritis,” Bioscience, Biotechnology and Biochemistry, vol. 73, no. 2, pp. 288–292, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. C. T. Vangsness Jr., W. Spiker, and J. Erickson, “A review of evidence-based medicine for glucosamine and chondroitin sulfate use in knee osteoarthritis,” Arthroscopy, vol. 25, no. 1, pp. 86–94, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. C.-B. James and T. L. Uhl, “A review of articular cartilage pathology and the use of glucosamine sulfate,” Journal of Athletic Training, vol. 36, no. 4, pp. 413–419, 2001. View at Scopus
  25. R. Largo, M. A. Alvarez-Soria, I. Díez-Ortego et al., “Glucosamine inhibits IL-1β-induced NFκB activation in human osteoarthritic chondrocytes,” Osteoarthritis and Cartilage, vol. 11, no. 4, pp. 290–298, 2003. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Nakamura, A. Shibakawa, M. Tanaka, T. Kato, and K. Nishioka, “Effects of glucosamine hydrochloride on the production of prostaglandin E2, nitric oxide and metalloproteases by chondrocytes and synoviocytes in osteoarthritis,” Clinical and Experimental Rheumatology, vol. 22, no. 3, pp. 293–299, 2004. View at Scopus
  27. B. A. Fox and M. M. Stephens, “Glucosamine hydrochloride for the treatment of osteoarthritis symptoms,” Clinical Iterventions in Aging, vol. 2, no. 4, pp. 599–604, 2007. View at Scopus
  28. J. W. Anderson, R. J. Nicolosi, and J. F. Borzelleca, “Glucosamine effects in humans: a review of effects on glucose metabolism, side effects, safety considerations and efficacy,” Food and Chemical Toxicology, vol. 43, no. 2, pp. 187–201, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. P. Boullanger, J. Banoub, and G. Descotes, “N-Allyloxycarbonyl derivatives of D-glucosamine as promotors of 1, 2-trans-glucosylation in Koenigs-Knorr reactions and in Lewis acid catalyzed condensations,” Canadian Journal of Chemistry, vol. 65, pp. 1343–1348, 1987.
  30. H. Jawed, S. Anjum, S. I. Awan, and S. U. Simjee, “Anti-arthritic effect of GN1, a novel synthetic analog of glucosamine, in the collagen-induced arthritis model in rats,” Inflammation Research, vol. 60, no. 12, pp. 1113–1120, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Zimmermann, “Ethical considerations in relation to pain in animal experimentation,” Acta Physiologica Scandinavica, vol. 128, no. 554, pp. 221–233, 1986. View at Scopus
  32. O. Bakharevski, A. N. Stein-Oakley, N. M. Thomson, and P. F. J. Ryan, “Collagen induced arthritis in rats. Contrasting effect of subcutaneous versus intradermal inoculation of type II collagen,” Journal of Rheumatology, vol. 25, no. 10, pp. 1945–1952, 1998. View at Scopus
  33. K. A. Clarke, S. A. Heitmeyer, A. G. Smith, and Y. O. Taiwo, “Gait analysis in a rat model of osteoarthrosis,” Physiology and Behavior, vol. 62, no. 5, pp. 951–954, 1997. View at Publisher · View at Google Scholar · View at Scopus
  34. S. U. A. Shah, N. Ashraf, Z. H. Soomro, M. R. Shah, N. Kabir, and S. U. Simjee, “The anti-arthritic and anti-oxidative effect of NBD (6-nitro-1,3-benzodioxane) in adjuvant-induced arthritis (AIA) in rats,” Inflammation Research, vol. 61, pp. 875–887, 2012. View at Publisher · View at Google Scholar · View at Scopus
  35. E. M. Glenn and J. Gray, “Adjuvant-induced polyarthritis in rats: biologic and histologic background,” American Journal of Veterinary Research, vol. 26, no. 114, pp. 1180–1194, 1965. View at Scopus
  36. R. S. Ghirnikar, Y. L. Lee, and L. F. Eng, “Inflammation in traumatic brain injury: role of cytokines and chemokines,” Neurochemical Research, vol. 23, no. 3, pp. 329–340, 1998. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. McHugh and W. B. McHugh, “Pain: neuroanatomy, chemical mediators, and clinical implications,” AACN Cinical Issues, vol. 11, no. 2, pp. 168–178, 2000. View at Scopus
  38. B. Laferrère, P. García-Lorda, C. D. Russell, and F. X. Pi-Sunyer, “Effect of oral glucosamine sulfate on serum leptin levels in human subjects,” Nutrition, vol. 20, no. 3, pp. 321–322, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. P. Coulthard, B. J. Pleuvry, M. Brewster, K. L. Wilson, and T. V. Macfarlane, “Gait analysis as an objective measure in a chronic pain model,” Journal of Neuroscience Methods, vol. 116, no. 2, pp. 197–213, 2002. View at Publisher · View at Google Scholar · View at Scopus
  40. S. U. Simjee, B. J. Pleuvry, and P. Coulthard, “Modulation of the gait deficit in arthritic rats by infusions of muscimol and bicuculline,” Pain, vol. 109, no. 3, pp. 453–460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. M. K. Boettger, K. Weber, M. Schmidt, M. Gajda, R. Bräuer, and H.-G. Schaible, “Gait abnormalities differentially indicate pain or structural joint damage in monoarticular antigen-induced arthritis,” Pain, vol. 145, no. 1-2, pp. 142–150, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. U. Simjee, H. Jawed, J. Quadri, and S. Saeed, “Quantitative gait analysis as a method to assess mechanical hyperalgesia modulated by disease-modifying antirheumatoid drugs in the adjuvant-induced arthritic rat,” Arthritis Research and Therapy, vol. 9, no. 5, article R91, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. L.-H. Meyer, L. Franssen, and T. Pap, “The role of mesenchymal cells in the pathophysiology of inflammatory arthritis,” Best Practice and Research, vol. 20, no. 5, pp. 969–981, 2006. View at Publisher · View at Google Scholar · View at Scopus
  44. S. Hayer, N. Pundt, M. A. Peters et al., “PI3Kγ regulates cartilage damage in chronic inflammatory arthritis,” FASEB Journal, vol. 23, no. 12, pp. 4288–4298, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. H. A. Wieland, M. Michaelis, B. J. Kirschbaum, and K. L. Rudolphi, “Osteoarthritis—an untreatable disease,” Nature Reviews Drug Discovery, vol. 4, no. 4, pp. 331–344, 2005. View at Scopus
  46. J. Zwerina, B. Tuerk, K. Redlich, J. S. Smolen, and G. Schett, “Imbalance of local bone metabolism in inflammatory arthritis and its reversal upon tumor necrosis factor blockade: direct analysis of bone turnover in murine arthritis,” Arthritis Research & Therapy, vol. 8, no. 1, article R22, 2006. View at Scopus
  47. N. C. Walsh and E. M. Gravallese, “Bone remodeling in rheumatic disease: a question of balance,” Immunological Reviews, vol. 233, no. 1, pp. 301–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. P. Garnero, P. Jouvenne, N. Buchs, P. D. Delmas, and P. Miossec, “Uncoupling of bone metabolism in rheumatoid arthritis patients with or without joint destruction: assessment with serum type I collagen breakdown products,” Bone, vol. 24, no. 4, pp. 381–385, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. M. van der Leeden, M. Steultjens, J. H. M. Dekker, A. P. A. Prins, and J. Dekker, “Forefoot joint damage, pain and disability in rheumatoid arthritis patients with foot complaints: the role of plantar pressure and gait characteristics,” Rheumatology, vol. 45, no. 4, pp. 465–469, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. O. Mutru, M. Penttilä, J. Pesonen, P. Salmela, O. Suhonen, and T. Sonck, “Diclofenac sodium (Voltaren) and indomethacin in the ambulatory treatment of rheumatoid arthritis: a double-blind multicentre study,” Scandinavian Journal of Rheumatology, Supplement, no. 22, pp. 51–56, 1978. View at Scopus
  51. J. Y. Reginster, R. Deroisy, L. C. Rovati et al., “Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial,” The Lancet, vol. 357, no. 9252, pp. 251–256, 2001. View at Publisher · View at Google Scholar · View at Scopus
  52. O. Bruyere, A. Honore, O. Ethgen et al., “Correlation between radiographic severity of knee osteoarthritis and future disease progression. Results from a 3-year prospective, placebo-controlled study evaluating the effect of glucosamine sulfate,” Osteoarthritis and Cartilage, vol. 11, no. 1, pp. 1–5, 2003. View at Publisher · View at Google Scholar · View at Scopus
  53. C. Bassleer, L. Rovati, and P. Franchimont, “Stimulation of proteoglycan production by glucosamine sulfate in chondrocytes isolated from human osteoarthritic articular cartilage in vitro,” Osteoarthritis and Cartilage, vol. 6, no. 6, pp. 427–434, 1998. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Beren, S. L. Hill, M. Diener-West, and N. R. Rose, “Effect of pre-loading oral glucosamine HCI/chondroitin sulfate/manganese ascorbate combination on expierimental arthritis in rats,” Proceedings of the Society for Experimental Biology and Medicine, vol. 226, no. 2, pp. 144–151, 2001. View at Scopus
  55. H. Nakamura, A. Shibakawa, M. Tanaka, T. Kato, and K. Nishioka, “Effects of glucosamine hydrochloride on the production of prostaglandin E2, nitric oxide and metalloproteases by chondrocytes and synoviocytes in osteoarthritis,” Clinical and Experimental Rheumatology, vol. 22, no. 3, pp. 293–299, 2004. View at Scopus
  56. A. Panasyuk, E. Frati, D. Ribault, and D. Mitrovic, “Effect of reactive oxygen species on the biosynthesis and structure of newly synthesized proteoglycans,” Free Radical Biology and Medicine, vol. 16, no. 2, pp. 157–167, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. L. B. Hughes, R. J. Reynolds, E. E. Brown et al., “Most common single-nucleotide polymorphisms associated with rheumatoid arthritis in persons of European ancestry confer risk of rheumatoid arthritis in African Americans,” Arthritis and Rheumatism, vol. 62, no. 12, pp. 3547–3553, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Grootveld, E. B. Henderson, A. Farrell, D. R. Blake, H. G. Parkes, and P. Haycock, “Oxidative damage to hyaluronate and glucose in synovial fluid during exercise of the inflamed rheumatoid joint. Detection of abnormal low-molecular-mass metabolites by proton-n.m.r. spectroscopy,” Biochemical Journal, vol. 273, no. 2, pp. 459–467, 1991. View at Scopus
  59. I. Dalle-Donne, R. Rossi, D. Giustarini, A. Milzani, and R. Colombo, “Protein carbonyl groups as biomarkers of oxidative stress,” Clinica Chimica Acta, vol. 329, no. 1-2, pp. 23–38, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Hrabák, V. Vercruysse, I. L. Kahán, and B. Vray, “Indomethacin prevents the induction of inducible nitric oxide synthase in murine peritoneal macrophages and decreases their nitric oxide production,” Life Sciences, vol. 68, no. 16, pp. 1923–1930, 2001. View at Publisher · View at Google Scholar · View at Scopus
  61. C. Friman, C. Johnston, C. Chew, and P. Davis, “Effect of diclofenac sodium, tolfenamic acid and indomethacin on the production of superoxide induced by N-formyl-methionyl-leucyl-phenylalanine in normal human polymorphonuclear leukocytes,” Scandinavian Journal of Rheumatology, vol. 15, no. 1, pp. 41–46, 1986. View at Scopus
  62. M. Pourcyrous, C. W. Leffler, H. S. Bada, S. B. Korones, and D. W. Busija, “Brain superoxide anion generation in asphyxiated piglets and the effect of indomethacin at therapeutic dose,” Pediatric Research, vol. 34, no. 3, pp. 366–369, 1993. View at Scopus
  63. P. J. Barnes and M. Karin, “Nuclear factor-κB—a pivotal transcription factor in chronic inflammatory diseases,” The New England Journal of Medicine, vol. 336, no. 15, pp. 1066–1071, 1997. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Kamata, S.-I. Honda, S. Maeda, L. Chang, H. Hirata, and M. Karin, “Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases,” Cell, vol. 120, no. 5, pp. 649–661, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. M. Karin and F. R. Greten, “NF-κB: linking inflammation and immunity to cancer development and progression,” Nature Reviews Immunology, vol. 5, no. 10, pp. 749–759, 2005. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Falgarone, L. Semerano, S. Rullé, and M.-C. Boissier, “Targeting lymphocyte activation to treat rheumatoid arthritis,” Joint Bone Spine, vol. 76, no. 4, pp. 327–332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. M. Feldmann, F. M. Brennan, B. M. Foxwell, and R. N. Maini, “The role of TNF alpha and IL-1 in rheumatoid arthritis,” Current Directions in Autoimmunity, vol. 3, pp. 188–199, 2001. View at Scopus
  68. I. B. McInnes and G. Schett, “Cytokines in the pathogenesis of rheumatoid arthritis,” Nature Reviews Immunology, vol. 7, no. 6, pp. 429–442, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. H. Jawed, S. U. A. Shah, S. Jamall, and S. U. Simjee, “N-(2-hydroxy phenyl) acetamide inhibits inflammation-related cytokines and ROS in adjuvant-induced arthritic (AIA) rats,” International Immunopharmacology, vol. 10, no. 8, pp. 900–905, 2010. View at Publisher · View at Google Scholar · View at Scopus
  70. S.-M. Hwang, C.-Y. Chen, S.-S. Chen, and J.-C. Chen, “Chitinous materials inhibit nitric oxide production by activated RAW 264.7 macrophages,” Biochemical and Biophysical Research Communications, vol. 271, no. 1, pp. 229–233, 2000. View at Publisher · View at Google Scholar · View at Scopus
  71. J.-T. Chen, J.-B. Liang, C.-L. Chou et al., “Glucosamine sulfate inhibits TNF-α and IFN-γ-induced production of ICAM-1 in human retinal pigment epithelial cells in vitro,” Investigative Ophthalmology and Visual Science, vol. 47, no. 2, pp. 664–672, 2006. View at Publisher · View at Google Scholar · View at Scopus