About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 489489, 7 pages
http://dx.doi.org/10.1155/2013/489489
Research Article

Detection of C. trachomatis in the Serum of the Patients with Urogenital Chlamydiosis

1Department of Medical Microbiology, Gamaleya Institute of Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Gamaleya Street 18, Moscow 123098, Russia
2Lycotec Ltd., St John’s Innovation Park, Cowley Road, Cambridge CB4 0WS, UK

Received 22 October 2012; Accepted 4 January 2013

Academic Editor: Gokce A. Toruner

Copyright © 2013 Naylia A. Zigangirova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. I. Byrne, “Chlamydia trachomatis strains and virulence: rethinking links to infection prevalence and disease severity,” Journal of Infectious Diseases, vol. 201, supplement 2, pp. S126–S133, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. R. S. Stephens, “The cellular paradigm of chlamydial pathogenesis,” Trends in Microbiology, vol. 11, no. 1, pp. 44–51, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. T. Darville and T. J. Hiltke, “Pathogenesis of genital tract disease due to Chlamydia trachomatis,” Journal of Infectious Diseases, vol. 201, supplement 2, pp. S114–S125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. S. J. Rasmussen, L. Eckmann, A. J. Quayle et al., “Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis,” Journal of Clinical Investigation, vol. 99, no. 1, pp. 77–87, 1997. View at Scopus
  5. K. A. Kelly, D. Wiley, E. Wiesmeier, M. Briskin, A. Butch, and T. Darville, “The combination of the gastrointestinal integrin (α4β7) and selectin ligand enhances T-cell migration to the reproductive tract during infection with Chlamydia trachomatis,” American Journal of Reproductive Immunology, vol. 61, no. 6, pp. 446–452, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. E. Manor and I. Sarov, “Fate of C. trachomatis in human monocytes and monocyte-derived macrophages,” Infection and Immunity, vol. 54, no. 1, pp. 90–95, 1986. View at Scopus
  7. M. Maurin and D. Raoult, “Isolation in endothelial cell cultures of Chlamydia trachomatis LGV (Serovar L2) from a lymph node of a patient with suspected cat scratch disease,” Journal of Clinical Microbiology, vol. 38, no. 6, pp. 2062–2064, 2000. View at Scopus
  8. A. Dautry-Varsat, A. Subtil, and T. Hackstadt, “Recent insights into the mechanisms of Chlamydia entry,” Cellular Microbiology, vol. 7, no. 12, pp. 1714–1722, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. L. N. Pedersen, B. Herrmann, and J. K. Møller, “Typing Chlamydia trachomatis: from egg yolk to nanotechnology,” FEMS Immunology and Medical Microbiology, vol. 55, no. 2, pp. 120–130, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Baguley and P. Greenhouse, “Non-genital manifestations of Chlamydia trachomatis,” Clinical Medicine, vol. 3, no. 3, pp. 206–208, 2003. View at Scopus
  11. M. Rihl, L. Köhler, A. Klos, and H. Zeidler, “Persistent infection of Chlamydia in reactive arthritis,” Annals of the Rheumatic Diseases, vol. 65, no. 3, pp. 281–284, 2006. View at Publisher · View at Google Scholar · View at Scopus
  12. J. M. Shabot, G. D. Roark, and A. L. Truant, “Chlamydia trachomatis in the ascitic fluid of patients with chronic liver disease,” American Journal of Gastroenterology, vol. 78, no. 5, pp. 291–294, 1983. View at Scopus
  13. J. M. Shabot, “Chlamydia trachomatis and ascites: going with the flow?” Hepatology, vol. 9, no. 3, pp. 505–506, 1989. View at Scopus
  14. M. Dan, L. D. J. Tyrrell, and G. Goldsand, “Isolation of Chlamydia trachomatis from the liver of a patient with prolonged fever,” Gut, vol. 28, no. 11, pp. 1514–1516, 1987. View at Scopus
  15. B. Mesurolle, F. Mignon, J. H. Gagnon, and P. J. Pickhardt, “Fitz-hugh-curtis syndrome caused by Chlamydia trachomatis: atypical CT findings,” American Journal of Roentgenology, vol. 182, no. 3, pp. 822–824, 2004. View at Scopus
  16. C. J. Chen, K. G. Wu, R. B. Tang, H. C. Yuan, W. J. Soong, and B. T. Hwang, “Characteristics of Chlamydia trachomatis infection in hospitalized infants with lower respiratory tract infection,” Journal of Microbiology, Immunology and Infection, vol. 40, no. 3, pp. 255–259, 2007. View at Scopus
  17. J. B. Dureux, Canton Ph., and G. Roche, “Lymphogranuloma venereum affecting simultaneously cervical and inguinal lymph nodes,” Annales de Dermatologie et de Venereologie, vol. 108, no. 6-7, pp. 523–529, 1981. View at Scopus
  18. I. M. Petyaev, N. A. Zigangirova, A. M. Petyaev et al., “Isolation of Chlamydia pneumoniae from serum samples of the patients with acute coronary syndrome,” International Journal of Medical Sciences, vol. 7, no. 4, pp. 181–190, 2010. View at Scopus
  19. I. P. Pashko, N. A. Zigangirova, I. M. Petiaev et al., “Modern aspects of diagnostics of chronic chlamydiosis caused by persisting forms of Chlamydia,” Zhurnal Mikrobiologii, Epidemiologii, i Immunobiologii, vol. 4, pp. 89–93, 2009. View at Scopus
  20. F. Broccolo, G. Locatelli, L. Sarmati et al., “Calibrated real-time PCR assay for quantitation of human herpesvirus 8 DNA in biological fluids,” Journal of Clinical Microbiology, vol. 40, no. 12, pp. 4652–4658, 2002. View at Publisher · View at Google Scholar · View at Scopus
  21. R. J. Hogan, S. A. Mathews, S. Mukhopadhyay, J. T. Summersgill, and P. Timms, “Chlamydial persistence: beyond the biphasic paradigm,” Infection and Immunity, vol. 72, no. 4, pp. 1843–1855, 2004. View at Publisher · View at Google Scholar · View at Scopus