About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 492372, 14 pages
http://dx.doi.org/10.1155/2013/492372
Review Article

What Is Recent in Pancreatic Cancer Immunotherapy?

1Department of Internal Medicine, University of Florence and Patologia Medica Unit Department of Biomedicine, Azienda Ospedaliero-Universitaria Careggi, 50134 Florence, Italy
2Department of Medical and Surgical Critical Care, University of Florence and Patologia Medica Unit Department of Biomedicine, Azienda Ospedaliero Universitaria Careggi, 50134 Florence, Italy
3Center of Oncologic Minimally Invasive Surgery, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
4Division of Immunology, Department of Internal Medicine, University of Florence, Viale Pieraccini, 6, 50134 Florence, Italy

Received 21 May 2012; Accepted 6 July 2012

Academic Editor: Julie Curtsinger

Copyright © 2013 Elena Niccolai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. W. Saif, “Pancreatic neoplasm in 2011: an update,” Journal of the Pancreas, vol. 12, no. 4, pp. 316–321, 2011. View at Scopus
  2. Surveillance Epidemiology and End Results (SEER), U.S. Cancer Statistics: 1999–2007 Incidence and Mortality Report, http://www.seer.cancer.gov/publications/uscs.html.
  3. M. W. Saif, “Controversies in the adjuvant treatment of pancreatic adenocarcinoma,” Journal of the Pancreas, vol. 8, no. 5, pp. 545–552, 2007. View at Scopus
  4. H. A. Burris III, M. J. Moore, J. Andersen et al., “Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial,” Journal of Clinical Oncology, vol. 15, no. 6, pp. 2403–2413, 1997. View at Scopus
  5. M. J. Moore, D. Goldstein, J. Hamm et al., “Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group,” Journal of Clinical Oncology, vol. 25, no. 15, pp. 1960–1966, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Yokokawa, C. Palena, P. Arlen et al., “Identification of novel human CTL epitopes and their agonist epitopes of mesothelin,” Clinical Cancer Research, vol. 11, no. 17, pp. 6342–6351, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. H. Andersen, L. O. Pedersen, J. C. Becket, and P. T. Straten, “Identification of a cytotoxic T lymphocyte response to the apoptosis inhibitor protein survivin in cancer patients,” Cancer Research, vol. 61, no. 3, pp. 869–872, 2001. View at Scopus
  8. F. M. Johnston, M. C. B. Tan, B. R. Tan Jr. et al., “Circulating mesothelin protein and cellular antimesothelin immunity in patients with pancreatic cancer,” Clinical Cancer Research, vol. 15, no. 21, pp. 6511–6518, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Kotera, J. D. Fontenot, G. Pecher, R. S. Metzgar, and O. J. Finn, “Humoral immunity against a tandem repeat epitope of human mucin MUC-1 in sera from breast, pancreatic, and colon cancer patients,” Cancer Research, vol. 54, no. 11, pp. 2856–2860, 1994. View at Scopus
  10. B. Kubuschok, F. Neumann, R. Breit et al., “Naturally occurring T-cell response against mutated p21 Ras oncoprotein in pancreatic cancer,” Clinical Cancer Research, vol. 12, no. 4, pp. 1365–1372, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Wenandy, R. B. Sørensen, L. Sengeløv, I. M. Svane, P. T. Straten, and M. H. Andersen, “The immunogenicity of the hTERT540-548 peptide in cancer,” Clinical Cancer Research, vol. 14, no. 1, pp. 4–7, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. H. Yanagimoto, T. Mine, K. Yamamoto et al., “Immunological evaluation of personalized peptide vaccination with gemcitabine for pancreatic cancer,” Cancer Science, vol. 98, no. 4, pp. 605–611, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Oji, S. Nakamori, M. Fujikawa et al., “Overexpression of the Wilms' tumor gene WT1 in pancreatic ductal adenocarcinoma,” Cancer Science, vol. 95, no. 7, pp. 583–587, 2004. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Ueda, Y. Miura, O. Kunihiro et al., “MUC1 overexpression is the most reliable marker of invasive carcinoma in intraductal papillary-mucinous tumor (IPMT),” Hepato-Gastroenterology, vol. 52, no. 62, pp. 398–403, 2005. View at Scopus
  15. K. Seki, T. Suda, Y. Aoyagi, et al., “Diagnosis of pancreatic adenocarcinoma by detection of human telomerase reverse transcriptasemessenger RNA in pancreatic juice with sample qualification,” Clinical Cancer Research, vol. 7, no. 7, pp. 1976–1981, 2001.
  16. M. K. Gjertsen, A. Bakka, J. Breivik et al., “Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding RAS mutation,” The Lancet, vol. 346, no. 8987, pp. 1399–1400, 1995. View at Scopus
  17. M. Wobser, P. Keikavoussi, V. Kunzmann, M. Weininger, M. H. Andersen, and J. C. Becker, “Complete remission of liver metastasis of pancreatic cancer under vaccination with a HLA-A2 restricted peptide derived from the universal tumor antigen survivin,” Cancer Immunology, Immunotherapy, vol. 55, no. 10, pp. 1294–1298, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Yamaguchi, M. Enjoji, and M. Tsuneyoshi, “Pancreatoduodenal carcinoma: a clinicopathologic study of 304 patients and immunohistochemical observation for CEA and CA19-9,” Journal of Surgical Oncology, vol. 47, no. 3, pp. 148–154, 1991. View at Scopus
  19. M. Komoto, B. Nakata, R. Amano et al., “HER2 overexpression correlates with survival after curative resection of pancreatic cancer,” Cancer Science, vol. 100, no. 7, pp. 1243–1247, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Maacke, A. Kessler, W. Schmiegel et al., “Overexpression of p53 protein during pancreatitis,” British Journal of Cancer, vol. 75, no. 10, pp. 1501–1504, 1997. View at Scopus
  21. P. Cappello, B. Tomaino, R. Chiarle et al., “An integrated humoral and cellular response is elicited in pancreatic cancer by α-enolase, a novel pancreatic ductal adenocarcinoma-associated antigen,” International Journal of Cancer, vol. 125, no. 3, pp. 639–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Hamanakai, Y. Suehiro, M. Fukui, K. Shikichi, K. Imai, and Y. Hinoda, “Circulating anti-MUC1 IGG antibodies as a favorable prognostic factor for pancreatic cancer,” International Journal of Cancer, vol. 103, no. 1, pp. 97–100, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. F. Pagès, J. Galon, M. C. Dieu-Nosjean, E. Tartour, C. Sautès-Fridman, and W. H. Fridman, “Immune infiltration in human tumors: a prognostic factor that should not be ignored,” Oncogene, vol. 29, no. 8, pp. 1093–1102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. X. R. Jiang, A. Song, S. Bergelson et al., “Advances in the assessment and control of the effector functions of therapeutic antibodies,” Nature Reviews Drug Discovery, vol. 10, no. 2, pp. 101–111, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Hellstrom, E. Friedman, T. Verch et al., “Anti-mesothelin antibodies and circulating mesothelin relate to the clinical state in ovarian cancer patients,” Cancer Epidemiology Biomarkers and Prevention, vol. 17, no. 6, pp. 1520–1526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Ho, R. Hassan, J. Zhang et al., “Humoral immune response to mesothelin in mesothelioma and ovarian cancer patients,” Clinical Cancer Research, vol. 11, no. 10, pp. 3814–3820, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Hassan, T. Bera, and I. Pastan, “Mesothelin: a new target for immunotherapy,” Clinical Cancer Research, vol. 10, no. 12 I, pp. 3937–3942, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. P. Argani, C. Iacobuzio-Donahue, B. Ryu et al., “Mesothelin is overexpressed in the vast majority of ductal adenocarcinomas of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE),” Clinical Cancer Research, vol. 7, no. 12, pp. 3862–3868, 2001. View at Scopus
  29. R. Hassan, Z. G. Laszik, M. Lerner, M. Raffeld, R. Postier, and D. Brackett, “Mesothelin is overexpressed in pancreaticobiliary adenocarcinomas but not in normal pancreas and chronic pancreatitis,” American Journal of Clinical Pathology, vol. 124, no. 6, pp. 838–845, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Hassan, S. Bullock, A. Premkumar et al., “Phase I study of SS1P, a recombinant anti-mesothelin immunotoxin given as a bolus I.V. infusion to patients with mesothelin-expressing mesothelioma, ovarian, and pancreatic cancers,” Clinical Cancer Research, vol. 13, no. 17, pp. 5144–5149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. D. Filpula and H. Zhao, “Releasable PEGylation of proteins with customized linkers,” Advanced Drug Delivery Reviews, vol. 60, no. 1, pp. 29–49, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. J. Kreitman, R. Hassan, D. J. FitzGerald, and I. Pastan, “Phase I trial of continuous infusion anti-mesothelin recombinant immunotoxin SS1P,” Clinical Cancer Research, vol. 15, no. 16, pp. 5274–5279, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. K. Armstrong, D. Laheru, W. W. Ma, et al., “A phase 1 study of MORAb-009, a monoclonal antibody against mesothelin in pancreatic cancer, mesothelioma and ovarian adenocarcinoma,” Journal of Clinical Oncology, vol. 25, no. 18S, Article ID 14041, 2007.
  34. Y. Feng, D. Xiao, Z. Zhu et al., “A novel human monoclonal antibody that binds with high affinity to mesothelin-expressing cells and kills them by antibody-dependent cell-mediated cytotoxicity,” Molecular Cancer Therapeutics, vol. 8, no. 5, pp. 1113–1118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Ho, M. Feng, R. J. Fisher, C. Rader, and I. Pastan, “A novel high-affinity human monoclonal antibody to mesothelin,” International Journal of Cancer, vol. 128, no. 9, pp. 2020–2030, 2011. View at Publisher · View at Google Scholar · View at Scopus
  36. H. Yamasaki, S. Ikeda, M. Okajima et al., “Expression and localization of MUC1, MUC2, MUC5AC and small intestinal mucin antigen in pancreatic tumors,” International Journal of Oncology, vol. 24, no. 1, pp. 107–113, 2004. View at Scopus
  37. C. F. Qu, Y. Li, Y. J. Song et al., “MUC1 expression in primary and metastaticpancreatic cancer cells for in vitro treatment by 213Bi-C595 radioimmunoconjugate,” British Journal of Cancer, vol. 91, no. 12, pp. 2086–2093, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. E. Levi, D. S. Klimstra, A. Andea, O. Basturk, and N. V. Adsay, “MUC1 and MUC2 in pancreatic neoplasia,” Journal of Clinical Pathology, vol. 57, no. 5, pp. 456–462, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. H. Tsutsumida, B. J. Swanson, P. K. Singh et al., “RNA interference suppression of MUC1 reduces the growth rate and metastatic phenotype of human pancreatic cancer cells,” Clinical Cancer Research, vol. 12, no. 10, pp. 2976–2987, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. D. V. Gold, D. E. Modrak, K. Schutsky, and T. M. Cardillo, “Combined 90Yttrium-Dota-Labeled PAM4 antibody radioimmunotherapy and gemcitabine radiosensitization for the treatment of a human pancreatic cancer xenograft,” International Journal of Cancer, vol. 109, no. 4, pp. 618–626, 2004. View at Publisher · View at Google Scholar · View at Scopus
  41. A. Danielczyk, R. Stahn, D. Faulstich et al., “PankoMab: a potent new generation anti-tumour MUC1 antibody,” Cancer Immunology, Immunotherapy, vol. 55, no. 11, pp. 1337–1347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. X. N. Fan, U. Karsten, S. Goletz, and Y. Cao, “Reactivity of a humanized antibody (hPankoMab) towards a tumor-related MUC1 epitope (TA-MUC1) with various human carcinomas,” Pathology Research and Practice, vol. 206, no. 8, pp. 585–589, 2010. View at Publisher · View at Google Scholar · View at Scopus
  43. G. Pratesi, G. Petrangolini, M. Tortoreto et al., “Antitumor efficacy of trastuzumab in nude mice orthotopically xenografted with human pancreatic tumor cells expressing low levels of HER-2/neu,” Journal of Immunotherapy, vol. 31, no. 6, pp. 537–544, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. H. Saeki, S. Yanoma, S. Takemiya et al., “Antitumor activity of a combination of trastuzumab (Herceptin) and oral fluoropyrimidine S-1 on human epidermal growth factor receptor 2-overexpressing pancreatic cancer,” Oncology Reports, vol. 18, no. 2, pp. 433–439, 2007. View at Scopus
  45. C. Larbouret, B. Robert, I. Navarro-Teulon et al., “In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas,” Clinical Cancer Research, vol. 13, no. 11, pp. 3356–3362, 2007. View at Publisher · View at Google Scholar · View at Scopus
  46. C. Larbouret, B. Robert, C. Bascoul-Mollevi et al., “Combined cetuximab and trastuzumab are superior to gemcitabine in the treatment of human pancreatic carcinoma xenografts,” Annals of Oncology, vol. 21, no. 1, pp. 98–103, 2010. View at Scopus
  47. R. D. Blumenthal, L. Osorio, M. K. Hayes, I. D. Horak, H. J. Hansen, and D. M. Goldenberg, “Carcinoembryonic antigen antibody inhibits lung metastasis and augments chemotherapy in a human colonic carcinoma xenograft,” Cancer Immunology, Immunotherapy, vol. 54, no. 4, pp. 315–327, 2005. View at Publisher · View at Google Scholar · View at Scopus
  48. A Phase I/II Study of Radioimmunotherapy with 90Y-Humanized MN-14 IgG Administered as a Single Dose to Patients with Refractory Advanced/Metastatic Pancreatic Carcinoma (NCT00041639), http://clinicaltrials.gov/.
  49. N. R. Lemoine, C. M. Hughes, C. M. Barton et al., “The epidermal growth factor receptor in human pancreatic cancer,” Journal of Pathology, vol. 166, no. 1, pp. 7–12, 1992. View at Scopus
  50. Y. Yamanaka, H. Friess, M. S. Kobrin, M. Buchler, H. G. Beger, and M. Korc, “Coexpression of epidermal growth factor receptor and ligands in human pancreatic cancer is associated with enhanced tumor aggressiveness,” Anticancer Research, vol. 13, no. 3, pp. 565–569, 1993. View at Scopus
  51. C. J. Bruns, C. C. Solorzano, M. T. Harbison et al., “Blockade of the epidermal growth factor receptor signaling by a novel tyrosine kinase inhibitor leads to apoptosis of endothelial cells and therapy of human pancreatic carcinoma,” Cancer Research, vol. 60, no. 11, pp. 2926–2935, 2000. View at Scopus
  52. S. S. W. Ng, M. S. Tsao, T. Nicklee, and D. W. Hedley, “Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma,” Molecular Cancer Therapeutics, vol. 1, no. 10, pp. 777–783, 2002. View at Scopus
  53. J. Baselga and C. L. Arteaga, “Critical update and emerging trends in epidermal growth factor receptor targeting in cancer,” Journal of Clinical Oncology, vol. 23, no. 11, pp. 2445–2459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  54. P. A. Philip, J. Benedetti, C. L. Corless et al., “Phase III study comparing gemcitabine plus cetuximab versus gemcitabine in patients with advanced pancreatic adenocarcinoma: Southwest oncology group-directed intergroup trial S0205,” Journal of Clinical Oncology, vol. 28, no. 22, pp. 3605–3610, 2010. View at Publisher · View at Google Scholar · View at Scopus
  55. R. Krempien, M. W. Munter, C. Timke, et al., “Cetuximab in combination with intensity modulated radiotherapy (IMRT) and gemcitabine for patients with locally advanced pancreatic cancer: a prospective phase II trial [PARC-Study ISRCTN56652283],” Journal of Clinical Oncology, vol. 25, no. 18S, article 4573, 2007.
  56. C. Bangard, A. Gossmann, A. Papyan, S. Tawadros, M. Hellmich, and C. J. Bruns, “Magnetic resonance imaging in an orthotopic rat model: blockade of epidermal growth factor receptor with EMD72000 inhibits human pancreatic carcinoma growth,” International Journal of Cancer, vol. 114, no. 1, pp. 131–138, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. U. Graeven, B. Kremer, T. Südhoff et al., “Phase I study of the humanised anti-EGFR monoclonal antibody matuzumab (EMD 72000) combined with gemcitabine in advanced pancreatic cancer,” British Journal of Cancer, vol. 94, no. 9, pp. 1293–1299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Korc, “Pathways for aberrant angiogenesis in pancreatic cancer,” Molecular Cancer, vol. 2, article 8, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. J. Karayiannakis, H. Bolanaki, K. N. Syrigos et al., “Serum vascular endothelial growth factor levels in pancreatic cancer patients correlate with advanced and metastatic disease and poor prognosis,” Cancer Letters, vol. 194, no. 1, pp. 119–124, 2003. View at Publisher · View at Google Scholar · View at Scopus
  60. H. L. Kindler, G. Friberg, D. A. Singh et al., “Phase II trial of bevacizumab plus gemcitabine in patients with advanced pancreatic cancer,” Journal of Clinical Oncology, vol. 23, no. 31, pp. 8033–8040, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. H. L. Kindler, D. Niedzwiecki, D. Hollis et al., “Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303),” Journal of Clinical Oncology, vol. 28, no. 22, pp. 3617–3622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  62. H. W. Bruckner, V. R. Hrehorovich, and H. S. Sawhney, “Bevacizumab as treatment for chemotherapy-resistant pancreatic cancer,” Anticancer Research, vol. 25, no. 5, pp. 3637–3639, 2005. View at Scopus
  63. J. Schmidt, E. Ryschich, E. Sievers, I. G. H. Schmidt-Wolf, M. W. Büchler, and A. Märten, “Telomerase-specific T-cells kill pancreatic tumor cells in vitro and in vivo,” Cancer, vol. 106, no. 4, pp. 759–764, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. W. C. Hahn, “Role of telomeres and telomerase in the pathogenesis of human cancer,” Journal of Clinical Oncology, vol. 21, no. 10, pp. 2034–2043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Hiyama, T. Kodama, K. Shinbara et al., “Telomerase activity is detected in pancreatic cancer but not in benign tumors,” Cancer Research, vol. 57, no. 2, pp. 326–331, 1997. View at Scopus
  66. S. J. Myung, M. H. Kim, Y. S. Kim et al., “Telomerase activity in pure pancreatic juice for the diagnosis of pancreatic cancer may be complementary to K-ras mutation,” Gastrointestinal Endoscopy, vol. 51, no. 6, pp. 708–713, 2000. View at Scopus
  67. N. Sato, N. Maehara, K. Mizumoto et al., “Telomerase activity of cultured human pancreatic carcinoma cell lines correlates with their potential for migration and invasion,” Cancer, vol. 91, no. 3, pp. 496–504, 2001. View at Publisher · View at Google Scholar
  68. S. J. Tang, J. A. Dumot, L. Wang et al., “Telomerase activity in pancreatic endocrine tumors,” American Journal of Gastroenterology, vol. 97, no. 4, pp. 1022–1030, 2002. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Sato, K. Mizumoto, M. Kusumoto et al., “Up-regulation of telomerase activity in human pancreatic cancer cells after exposure to etoposide,” British Journal of Cancer, vol. 82, no. 11, pp. 1819–1826, 2000. View at Scopus
  70. P. Mukherjee, A. R. Ginardi, C. S. Madsen et al., “Mice with spontaneous pancreatic cancer naturally develop MUC-1-specific CTLs that eradicate tumors when adoptively transferred,” Journal of Immunology, vol. 165, no. 6, pp. 3451–3460, 2000. View at Scopus
  71. T. Kawaoka, M. Oka, M. Takashima et al., “Adoptive immunotherapy for pancreatic cancer: cytotoxic T lymphocytes stimulated by the MUC1-expressing human pancreatic cancer cell line YPK-1,” Oncology Reports, vol. 20, no. 1, pp. 155–163, 2008. View at Scopus
  72. H. Kondo, S. Hazama, T. Kawaoka et al., “Adoptive immunotherapy for pancreatic cancer using MUC1 peptide-pulsed dendritic cells and activated T lymphocytes,” Anticancer Research, vol. 28, no. 1B, pp. 379–387, 2008. View at Scopus
  73. T. Hensler, H. Hecker, K. Heeg et al., “Distinct mechanisms of immunosuppression as a consequence of major surgery,” Infection and Immunity, vol. 65, no. 6, pp. 2283–2291, 1997. View at Scopus
  74. G. Shakhar and S. Ben-Eliyahu, “Potential prophylactic measures against postoperative immunosuppression: could they reduce recurrence rates in oncological patients?” Annals of Surgical Oncology, vol. 10, no. 8, pp. 972–992, 2003. View at Publisher · View at Google Scholar · View at Scopus
  75. H. Weighardt, C. D. Heidecke, K. Emmanuilidis et al., “Sepsis after major visceral surgery is associated with sustained and interferon-γ-resistant defects of monocyte cytokine production,” Surgery, vol. 127, no. 3, pp. 309–315, 2000. View at Scopus
  76. S. Koido, E. Hara, S. Homma et al., “Dendritic/pancreatic carcinoma fusions for clinical use: comparative functional analysis of healthy-versus patient-derived fusions,” Clinical Immunology, vol. 135, no. 3, pp. 384–400, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. M. K. Gjertsen, T. Buanes, A. R. Rosseland et al., “Intradermal ras peptide vaccination with granulocyte-macrophage colony-stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma,” International Journal of Cancer, vol. 92, no. 3, pp. 441–450, 2001. View at Publisher · View at Google Scholar · View at Scopus
  78. S. Koido, E. Hara, S. Homma et al., “Dendritic cells fused with allogeneic colorectal cancer cell line present multiple colorectal cancer-specific antigens and induce antitumor immunity against autologous tumor cells,” Clinical Cancer Research, vol. 11, no. 21, pp. 7891–7900, 2005. View at Publisher · View at Google Scholar · View at Scopus
  79. H. Saito, P. Dubsky, C. Dantin, O. J. Finn, J. Banchereau, and A. K. Palucka, “Cross-priming of cyclin B1, MUC-1 and survivin-specific CD8+ T cells by dendritic cells loaded with killed allogeneic breast cancer cells,” Breast Cancer Research, vol. 8, no. 6, article R65, 2006. View at Publisher · View at Google Scholar · View at Scopus
  80. E. M. Jaffee, R. H. Hruban, B. Biedrzycki et al., “Novel allogeneic granulocyte-macrophage colony-stimulating factor-secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation,” Journal of Clinical Oncology, vol. 19, no. 1, pp. 145–156, 2001. View at Scopus
  81. D. Laheru, C. Yeo, B. Biedrzycki, et al., “A safety and efficacy trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene in combination with adjuvant chemoradiotherapy for the treatment of adenocarcinoma of the pancreas,” Journal of Clinical Oncology, vol. 25, no. 18S, article 3010, 2007.
  82. A. M. Thomas, L. M. Santarsiero, E. R. Lutz et al., “Mesothelin-specific CD8+ T cell responses provide evidence of in vivo cross-priming by antigen-presenting cells in vaccinated pancreatic cancer patients,” Journal of Experimental Medicine, vol. 200, no. 3, pp. 297–306, 2004. View at Publisher · View at Google Scholar · View at Scopus
  83. R. Hassan and M. Ho, “Mesothelin targeted cancer immunotherapy,” European Journal of Cancer, vol. 44, no. 1, pp. 46–53, 2008. View at Publisher · View at Google Scholar · View at Scopus
  84. D. Laheru, E. Lutz, J. Burke et al., “Allogeneic granulocyte macrophage colony-stimulating factor-secreting tumor immunotherapy alone or in sequence with cyclophosphamide for metastatic pancreatic cancer: a pilot study of safety, feasibility, and immune activation,” Clinical Cancer Research, vol. 14, no. 5, pp. 1455–1463, 2008. View at Publisher · View at Google Scholar · View at Scopus
  85. K. M. Hege, K. Jooss, and D. Pardoll, “GM-CSF gene-modifed cancer cell immunotherapies: of mice and men,” International Reviews of Immunology, vol. 25, no. 5-6, pp. 321–352, 2006. View at Publisher · View at Google Scholar · View at Scopus
  86. R. E. Beatson, J. Taylor-Papadimitriou, and J. M. Burchell, “MUC1 immunotherapy,” Immunotherapy, vol. 2, no. 3, pp. 305–327, 2010. View at Publisher · View at Google Scholar · View at Scopus
  87. A Phase I/II Study of an Antitumor Vaccination Using Alpha(1, 3) Galactosyltransferase Expressing Allogeneic Tumor Cells in Patients with Pancreatic Cancer (NCT00255827), http://clinicaltrials.gov/.
  88. A Phase II Study of Low Dose HyperAcute(R)-Pancreatic Cancer Vaccine in Subjects with Surgically Resected Pancreatic Cancer (NCT00614601), http://clinicaltrials.gov/.
  89. A Phase II Study of HyperAcute(R)-Pancreatic Cancer Vaccine in Subjects with Surgically Resected Pancreatic Cancer (NCT00569387), http://clinicaltrials.gov/.
  90. R. B. Mandell, R. Flick, W. R. Staplin et al., “The αgal hyperAcute technology: enhancing immunogenicity of antiviral vaccines by exploiting the natural αgal-mediated zoonotic blockade,” Zoonoses and Public Health, vol. 56, no. 6-7, pp. 391–406, 2009. View at Publisher · View at Google Scholar · View at Scopus
  91. B. A. Macher and U. Galili, “The Galα1,3Galβ1,4GlcNAc-R (α-Gal) epitope: a carbohydrate of unique evolution and clinical relevance,” Biochimica et Biophysica Acta, vol. 1780, no. 2, pp. 75–88, 2008. View at Publisher · View at Google Scholar · View at Scopus
  92. T. Deguchi, M. Tanemura, E. Miyoshi et al., “Increased immunogenicity of tumor-associated antigen, mucin 1, engineered to express α-Gal epitopes: a novel approach to immunotherapy in pancreatic cancer,” Cancer Research, vol. 70, no. 13, pp. 5259–5269, 2010. View at Publisher · View at Google Scholar · View at Scopus
  93. A. W. Purcell, J. McCluskey, and J. Rossjohn, “More than one reason to rethink the use of peptides in vaccine design,” Nature Reviews Drug Discovery, vol. 6, no. 5, pp. 404–414, 2007. View at Publisher · View at Google Scholar · View at Scopus
  94. M. S. Bijker, C. J. M. Melief, R. Offringa, and S. H. van der Burg, “Design and development of synthetic peptide vaccines: past, present and future,” Expert Review of Vaccines, vol. 6, no. 4, pp. 591–603, 2007. View at Publisher · View at Google Scholar · View at Scopus
  95. S. Kanodia and W. M. Kast, “Peptide-based vaccines for cancer: realizing their potential,” Expert Review of Vaccines, vol. 7, no. 10, pp. 1533–1545, 2008. View at Publisher · View at Google Scholar · View at Scopus
  96. C. J. Voskens, S. E. Strome, and D. A. Sewell, “Synthetic peptide-based cancer vaccines: lessons learned and hurdles to overcome,” Current Molecular Medicine, vol. 9, no. 6, pp. 683–693, 2009. View at Publisher · View at Google Scholar · View at Scopus
  97. S. Mocellin, P. Pilati, and D. Nitti, “Peptide-based anticancer vaccines: recent advances and future perspectives,” Current Medicinal Chemistry, vol. 16, no. 36, pp. 4779–4796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  98. H. Yanagimoto, S. Takai, S. Satoi et al., “Impaired function of circulating dendritic cells in patients with pancreatic cancer,” Clinical Immunology, vol. 114, no. 1, pp. 52–60, 2005. View at Publisher · View at Google Scholar · View at Scopus
  99. T. A. Waldmann, “Immunotherapy: past, present and future,” Nature Medicine, vol. 9, no. 3, pp. 269–277, 2003. View at Publisher · View at Google Scholar · View at Scopus
  100. O. J. Finn, “Molecular origins of cancer: cancer immunology,” The New England Journal of Medicine, vol. 358, no. 25, pp. 2704–2715, 2008. View at Publisher · View at Google Scholar · View at Scopus
  101. M. Miyazawa, R. Ohsawa, T. Tsunoda et al., “Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer,” Cancer Science, vol. 101, no. 2, pp. 433–439, 2010. View at Publisher · View at Google Scholar · View at Scopus
  102. R. K. Ramanathan, K. M. Lee, J. McKolanis et al., “Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer,” Cancer Immunology, Immunotherapy, vol. 54, no. 3, pp. 254–264, 2005. View at Publisher · View at Google Scholar · View at Scopus
  103. K. Yamamoto, T. Ueno, T. Kawaoka et al., “MUC1 peptide vaccination in patients with advanced pancreas or biliary tract cancer,” Anticancer Research, vol. 25, no. 5, pp. 3575–3579, 2005. View at Scopus
  104. International Clinical Trials Registry Platform (ICTRP), http://apps.who.int/trialsearch/trial.aspx?trialid=JPRN-UMIN000001664.
  105. S. L. Bernhardt, M. K. Gjertsen, S. Trachsel et al., “Telomerase peptide vaccination of patients with non-resectable pancreatic cancer: a dose escalating phase I/II study,” British Journal of Cancer, vol. 95, no. 11, pp. 1474–1482, 2006. View at Publisher · View at Google Scholar · View at Scopus
  106. T. Buanes, J. Maurel, W. Liauw, M. Hebbar, and J. Nemunaitis, “A randomized Phase III study of gemcitabine (G) versus GV1001 in sequential combination with G in patients with unresectable and metastatic pancreatic cancer (PC),” Journal of Clinical Oncology, vol. 27, no. 15S, article 4601, 2009.
  107. G. K. Abou-Alfa, P. B. Chapman, J. Feilchenfeldt et al., “Targeting mutated K-ras in pancreatic adenocarcinoma using an adjuvant vaccine,” American Journal of Clinical Oncology, vol. 34, no. 3, pp. 321–325, 2011. View at Publisher · View at Google Scholar · View at Scopus
  108. A. Toubaji, M. Achtar, M. Provenzano et al., “Pilot study of mutant ras peptide-based vaccine as an adjuvant treatment in pancreatic and colorectal cancers,” Cancer Immunology, Immunotherapy, vol. 57, no. 9, pp. 1413–1420, 2008. View at Publisher · View at Google Scholar · View at Scopus
  109. C. J. M. Melief and S. H. van der Burg, “Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines,” Nature Reviews Cancer, vol. 8, no. 5, pp. 351–360, 2008. View at Publisher · View at Google Scholar · View at Scopus
  110. M. S. Bijker, S. J. F. van den Eeden, K. L. Franken, C. J. M. Melief, S. H. van der Burg, and R. Offringa, “Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation,” European Journal of Immunology, vol. 38, no. 4, pp. 1033–1042, 2008. View at Publisher · View at Google Scholar · View at Scopus
  111. S. Wedén, M. Klemp, I. P. Gladhaug et al., “Long-term follow-up of patients with resected pancreatic cancer following vaccination against mutant K-ras,” International Journal of Cancer, vol. 128, no. 5, pp. 1120–1128, 2011. View at Publisher · View at Google Scholar · View at Scopus
  112. J. Begley and A. Ribas, “Targeted therapies to improve tumor immunotherapy,” Clinical Cancer Research, vol. 14, no. 14, pp. 4385–4391, 2008. View at Publisher · View at Google Scholar · View at Scopus
  113. L. Chapatte, M. Ayyoub, S. Morel et al., “Processing of tumor-associated antigen by the proteasomes of dendritic cells controls in vivo T-cell responses,” Cancer Research, vol. 66, no. 10, pp. 5461–5468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  114. A. N. Houghton and J. A. Guevara-Patiño, “Immune recognition of self in immunity against cancer,” Journal of Clinical Investigation, vol. 114, no. 4, pp. 468–471, 2004. View at Publisher · View at Google Scholar · View at Scopus
  115. L. M. Weiner, R. Surana, and J. Murray, “Vaccine prevention of cancer: can endogenous antigens be targeted?” Cancer Prevention Research, vol. 3, no. 4, pp. 410–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  116. Z. Yu, M. R. Theoret, C. E. Touloukian et al., “Poor immunogenicity of a self/tumor antigen derives from peptide-MHC-I instability and is independent of tolerance,” Journal of Clinical Investigation, vol. 114, no. 4, pp. 551–559, 2004. View at Publisher · View at Google Scholar · View at Scopus
  117. K. Y. Tsang, C. Palena, J. Gulley, P. Arlen, and J. Schlom, “A human cytotoxic T-lymphocyte epitope and its agonist epitope from the nonvariable number of tandem repeat sequence of MUC-1,” Clinical Cancer Research, vol. 10, no. 6, pp. 2139–2149, 2004. View at Publisher · View at Google Scholar · View at Scopus
  118. H. Yanagimoto, H. Shiomi, S. Satoi et al., “A phase II study of personalized peptide vaccination combined with gemcitabine for non-resectable pancreatic cancer patients,” Oncology Reports, vol. 24, no. 3, pp. 795–801, 2010. View at Publisher · View at Google Scholar · View at Scopus
  119. R. G. Webster and H. L. Robinson, “DNA vaccines: a review of developments,” BioDrugs, vol. 8, no. 4, pp. 273–292, 1997. View at Scopus
  120. G. Eschenburg, A. Stermann, R. Preissner, H. A. Meyer, and H. N. Lode, “DNA vaccination: using the patient's immune system to overcome cancer,” Clinical and Developmental Immunology, vol. 2010, Article ID 169484, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  121. A Phase I Clinical Trial to Evaluate the Safety and Immunogenicity of a Mammaglobin-A DNA Vaccine in Breast Cancer Patients with Metastatic Disease (NCT00807781), http://clinicaltrials.gov/.
  122. DNA Vaccine Coding for the Rhesus Prostate Specific Antigen (rhPSA) and Electroporation in Patients with Relapsed Prostate Cancer, A Phase I/II Study (NCT00859729), http://clinicaltrials.gov/.
  123. A Phase Ia/Ib Study of the Safety and Immunogenicity of a Xenogeneic Tyrosinase DNA Vaccine Melanoma (NCT00471133), http://clinicaltrials.gov/.
  124. Y. Rong, D. Jin, W. Wu et al., “Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine,” BMC Cancer, vol. 9, article 191, 2009. View at Publisher · View at Google Scholar · View at Scopus
  125. K. Zhu, H. Qin, S. C. Cha et al., “Survivin DNA vaccine generated specific antitumor effects in pancreatic carcinoma and lymphoma mouse models,” Vaccine, vol. 25, no. 46, pp. 7955–7961, 2007. View at Publisher · View at Google Scholar · View at Scopus
  126. M. C. Gaffney, P. Goedegebuure, H. Kashiwagi et al., “DNA vaccination targeting mesothelin combined with anti-GITR antibody induces rejection of pancreatic adenocarcinoma,” American Association For Cancer Research, vol. 47, article 329a, 2006.
  127. A. D. Cohen, A. Diab, M. A. Perales et al., “Agonist anti-GITR antibody enhances vaccine-induced CD8+ T-cell responses and tumor immunity,” Cancer Research, vol. 66, no. 9, pp. 4904–4912, 2006. View at Publisher · View at Google Scholar · View at Scopus
  128. E. M. Esparza and R. H. Arch, “Glucocorticoid-induced TNF receptor functions as a costimulatory receptor that promotes survival in early phases of T cell activation,” Journal of Immunology, vol. 174, no. 12, pp. 7869–7874, 2005. View at Scopus
  129. R. M. Steinman, “The dendritic cell system and its role in immunogenicity,” Annual Review of Immunology, vol. 9, pp. 271–296, 1991. View at Scopus
  130. J. Banchereau and A. K. Palucka, “Dendritic cells as therapeutic vaccines against cancer,” Nature Reviews Immunology, vol. 5, no. 4, pp. 296–306, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. F. O. Nestle, S. Alijagic, M. Gilliet et al., “Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells,” Nature Medicine, vol. 4, no. 3, pp. 328–332, 1998. View at Publisher · View at Google Scholar · View at Scopus
  132. A. Mackensen, B. Herbst, J. L. Chen et al., “Phase I study in melanoma patients of a vaccine with peptide-pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells,” International Journal of Cancer, vol. 89, no. 2, pp. 385–392, 2000. View at Scopus
  133. A. K. Palucka, H. Ueno, J. Connolly et al., “Dendritic cells loaded with killed allogeneic melanoma cells can induce objective clinical responses and MART-1 specific CD8+ T-cell immunity,” Journal of Immunotherapy, vol. 29, no. 5, pp. 545–557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  134. E. Gilboa and J. Vieweg, “Cancer immunotherapy with mRNA-transfected dendritic cells,” Immunological Reviews, vol. 199, pp. 251–263, 2004. View at Publisher · View at Google Scholar · View at Scopus
  135. S. K. Nair, D. Boczkowski, M. Morse, R. I. Cumming, H. K. Lyerly, and E. Gilboa, “Induction of primary carcinoembryonic antigen (CEA)-specific cytotoxic T lymphocytes in vitro using human dendritic cells transfected with RNA,” Nature Biotechnology, vol. 16, no. 4, pp. 364–369, 1998. View at Publisher · View at Google Scholar · View at Scopus
  136. J. Gong, D. Chen, M. Kashiwaba, and D. Kufe, “Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells,” Nature Medicine, vol. 3, no. 5, pp. 558–561, 1997. View at Scopus
  137. T. Schmidt, C. Ziske, A. Märten et al., “Intratumoral immunization with tumor RNA-pulsed dendritic cells confers antitumor immunity in a C57BL/6 pancreatic murine tumor model,” Cancer Research, vol. 63, no. 24, pp. 8962–8967, 2003. View at Scopus
  138. M. Schnurr, C. Scholz, S. Rothenfusser et al., “Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and γδT cells,” Cancer Research, vol. 62, no. 8, pp. 2347–2352, 2002. View at Scopus
  139. A. J. Lepisto, A. J. Moser, H. Zeh, et al., “A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors,” Cancer Therapy, vol. 6, no. B, pp. 955–964, 2008.
  140. G. Pecher, A. Häring, L. Kaiser, and E. Thiel, “Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial,” Cancer Immunology, Immunotherapy, vol. 51, no. 11-12, pp. 669–673, 2002. View at Publisher · View at Google Scholar · View at Scopus
  141. M. A. Morse, S. K. Nair, D. Boczkowski et al., “The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer,” International Journal of Gastrointestinal Cancer, vol. 32, no. 1, pp. 1–6, 2002. View at Scopus
  142. D. P. Carbone, I. F. Ciernik, M. J. Kelley et al., “Immunization with mutant p53- and K-ras-derived peptides in cancer patients: immune response and clinical outcome,” Journal of Clinical Oncology, vol. 23, no. 22, pp. 5099–5107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  143. G. Mazzolini, C. Alfaro, B. Sangro et al., “Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastatic gastrointestinal carcinomas,” Journal of Clinical Oncology, vol. 23, no. 5, pp. 999–1010, 2005. View at Publisher · View at Google Scholar · View at Scopus
  144. S. Koido, E. Hara, S. Homma, K. Fujise, J. Gong, and H. Tajiri, “Dendritic/tumor fusion cell-based vaccination against cancer,” Archivum Immunologiae et Therapiae Experimentalis, vol. 55, no. 5, pp. 281–287, 2007. View at Publisher · View at Google Scholar · View at Scopus
  145. J. Gong, S. Koido, and S. K. Calderwood, “Cell fusion: from hybridoma to dendritic cell-based vaccine,” Expert Review of Vaccines, vol. 7, no. 7, pp. 1055–1068, 2008. View at Publisher · View at Google Scholar · View at Scopus
  146. S. Koido, E. Hara, S. Homma, T. Ohkusa, J. Gong, and H. Tajiri, “Cancer immunotherapy by fusions of dendritic cells and tumor cells,” Immunotherapy, vol. 1, no. 1, pp. 49–62, 2009. View at Publisher · View at Google Scholar · View at Scopus
  147. M. Yamamoto, T. Kamigaki, K. Yamashita et al., “Enhancement of anti-tumor immunity by high levels of Th1 and Th17 with a combination of dendritic cell fusion hybrids and regulatory T cell depletion in pancreatic cancer,” Oncology Reports, vol. 22, no. 2, pp. 337–343, 2009. View at Publisher · View at Google Scholar · View at Scopus
  148. F. V. Ona, N. Zamcheck, P. Dhar, T. Moore, and H. Z. Kupchik, “Carcinoembryonic antigen (CEA) in the diagnosis of pancreatic cancer,” Cancer, vol. 31, no. 2, pp. 324–327, 1973. View at Scopus
  149. S. Lei, H. E. Appert, B. Nakata, D. R. Domenico, K. Kim, and J. M. Howard, “Overexpression of HER2/neu oncogene in pancreatic cancer correlates with shortened survival,” International Journal of Pancreatology, vol. 17, no. 1, pp. 15–21, 1995. View at Scopus
  150. B. M. Ryan, N. O'Donovan, and M. J. Duffy, “Survivin: a new target for anti-cancer therapy,” Cancer Treatment Reviews, vol. 35, no. 7, pp. 553–562, 2009. View at Publisher · View at Google Scholar · View at Scopus
  151. W. Zhou, M. Capello, C. Fredolini et al., “Mass spectrometry analysis of the post-translational modifications of r-enolase from pancreatic ductal adenocarcinoma cells,” Journal of Proteome Research, vol. 9, no. 6, pp. 2929–2936, 2010. View at Publisher · View at Google Scholar · View at Scopus
  152. H. H. Emina and H. L. Kaufman, “CEA-based vaccines,” Expert Review of Vaccines, vol. 1, no. 1, pp. 49–63, 2002. View at Publisher · View at Google Scholar · View at Scopus
  153. C. K. Tang, M. Katsara, and V. Apostolopoulos, “Strategies used for MUC1 immunotherapy: human clinical studies,” Expert Review of Vaccines, vol. 7, no. 7, pp. 963–975, 2008. View at Publisher · View at Google Scholar · View at Scopus
  154. A. Scarpa, P. Capelli, K. Mukai et al., “Pancreatic adenocarcinomas frequently show p53 gene mutations,” The American Journal of Pathology, vol. 142, no. 5, pp. 1534–1543, 1993. View at Scopus
  155. F. Chen, W. Wang, and W. S. El-Deiry, “Current strategies to target p53 in cancer,” Biochemical Pharmacology, vol. 80, no. 5, pp. 724–730, 2010. View at Publisher · View at Google Scholar · View at Scopus
  156. C. Almoguera, D. Shibata, K. Forrester, J. Martin, N. Arnheim, and M. Perucho, “Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes,” Cell, vol. 53, no. 4, pp. 549–554, 1988. View at Scopus
  157. J. Itakura, T. Ishiwata, H. Friess et al., “Enhanced expression of vascular endothelial growth factor in human pancreatic cancer correlates with local disease progression,” Clinical Cancer Research, vol. 3, no. 8, pp. 1309–1316, 1997. View at Scopus
  158. M. Li, U. Bharadwaj, R. Zhang et al., “Mesothelin is a malignant factor and therapeutic vaccine target for pancreatic cancer,” Molecular Cancer Therapeutics, vol. 7, no. 2, pp. 286–296, 2008. View at Publisher · View at Google Scholar · View at Scopus
  159. H. J. Kang, S. K. Jung, S. J. Kim, and S. J. Chung, “Structure of human α-enolase (hENO1), a multifunctional glycolytic enzyme,” Acta Crystallographica D, vol. 64, no. 6, pp. 651–657, 2008. View at Publisher · View at Google Scholar · View at Scopus