About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 495319, 8 pages
http://dx.doi.org/10.1155/2013/495319
Research Article

Preparation and Characterization of a Gastric Floating Dosage Form of Capecitabine

1Department of Pharmacy, Faculty of Medicine, Universiti of Malaya, 50603 Kuala Lumpur, Malaysia
2Institute of Tropical Agriculture, Universiti Putra Malaysia (UPM), 43400 Selangor, Serdang, Malaysia
3Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran

Received 30 May 2013; Accepted 8 July 2013

Academic Editor: Ibrahim Banat

Copyright © 2013 Ehsan Taghizadeh Davoudi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. D. Cook, M. Carriaga, S. G. Kahn, W. Schalch, and B. S. Skikne, “Gastric delivery system for iron supplementation,” The Lancet, vol. 335, no. 8698, pp. 1136–1139, 1990. View at Publisher · View at Google Scholar · View at Scopus
  2. G. J. Yoo, E. G. Levine, C. Aviv, C. Ewing, and A. Au, “Older women, breast cancer, and social support,” Supportive Care in Cancer, vol. 18, no. 12, pp. 1521–1530, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Miyazaki, H. Yamaguchi, C. Yokouchi, M. Takada, and W.-M. Hou, “Sustained-release and intragastric-floating granules of indomethacin using chitosan in rabbits,” Chemical and Pharmaceutical Bulletin, vol. 36, no. 10, pp. 4033–4038, 1988. View at Scopus
  4. R. C. F. Leonard and T. P. Pwint, “Therapeutic aspect of metastatic breast cancer: chemotherapy,” in Metastasis of Breast Cancer, R. E. Mansel, Ed., pp. 373–388, Springer, Berlin, Germany, 2007.
  5. S. Arora, J. Ali, A. Ahuja, R. K. Khar, and S. Baboota, “Floating drug delivery systems: a review,” AAPS PharmSciTech, vol. 6, no. 3, pp. 372–390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. H. A. Gezairy, Guidelines for Management of Breast Cancer, EMRO, 2006.
  7. Minestry of Health Malaysia, Clinical Practice Guidlines: Management of Breast Cancer, Minestry of Health Malaysia, Putrajaya, Malaysia, 2002.
  8. R. C. F. Leonard and T. P. Pwint, “Therapeutic aspect of metastatic breast cancer: chemotherapy,” in Metastasis of Breast Cancer, R. E. Mansel, Ed., pp. 373–388, Springer, Berlin, Germany, 2007.
  9. Roche, Capecitabine, Food and Drug Administration (FDA), London, UK, 2000.
  10. J. Khurana, Development and Characterization of Polymeric Nanoparticulate Delivery System for Hydrophillic Drug: Gemcitabine, Creighton University, Omaha, Neb, usa, 2009.
  11. S. Patel, “Oral sustained release formulation of anti cancer drug comptothecin using hydroxyl propyle methyl cellulose,” 2008, Long Island.
  12. G. B. Jacobson, R. Shinde, C. H. Contag, and R. N. Zare, “Sustained release of drugs dispersed in polymer nanoparticles,” Angewandte Chemie, vol. 47, no. 41, pp. 7880–7882, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. A. V. Mayavanshi and S. S. Gajjar, “Floating drug delivery systems to increase gastric retention of drugs: a review,” Research Journal of Pharmacy and Technology, vol. 1, no. 4, pp. 345–348, 2008.
  14. C. Sauzet, M. Claeys-Bruno, M. Nicolas, J. Kister, P. Piccerelle, and P. Prinderre, “An innovative floating gastro retentive dosage system: formulation and in vitro evaluation,” International Journal of Pharmaceutics, vol. 378, no. 1-2, pp. 23–29, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Jaimini, A. C. Rana, and Y. S. Tanwar, “Formulation and evaluation of famotidine floating tablets,” Current Drug Delivery, vol. 4, no. 1, pp. 51–55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. R. S. Rathi, V. R. Patil, M. M. Patel, B. A. Patil, A. G. Shankhpal, and S. D. Barhate, “Formulation and evaluation of matrix floating tablet of Famotidine,” Journal of Pharmacy Research, vol. 2, no. 3, pp. 531–533, 2009.
  17. A. Savaser, Y. Özkan, and A. Isımer, “Preparation and in vitro evaluation of sustained release tablet formulations of diclofenac sodium,” Il Farmaco, vol. 60, pp. 171–177, 2005.
  18. H. Garse, M. Vij, M. Yamgar, V. Kadam, and R. Hirlekar, “Formulation and evaluation of a gastroretentive dosage form of labetalol hydrochloride,” Archives of Pharmacal Research, vol. 33, no. 3, pp. 405–410, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. D. Ray and A. K. Prusty, “Designing and in-vitro studies of gastric floating tablets of tramadol hydrochloride,” International Journal of Applied Pharmaceutics, vol. 2, no. 4, pp. 12–16, 2010.
  20. S. Londhe, S. Gattani, and S. Surana, “Development of floating drug delivery system with biphasic release for verapamil hydrochloride: in vitro and in vivo evaluation,” Journal of Pharmaceutical Science and Technology, vol. 2, no. 11, pp. 361–367, 2010.
  21. R. C. Nagarwal, D. N. Ridhurkar, and J. K. Pandit, “In vitro release kinetics and bioavailability of gastroretentive cinnarizine hydrochloride tablet,” AAPS PharmSciTech, vol. 18, no. 1, pp. 294–303, 2010. View at Scopus
  22. M. I. Tadros, “Controlled-release effervescent floating matrix tablets of ciprofloxacin hydrochloride: development, optimization and in vitro-in vivo evaluation in healthy human volunteers,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 74, no. 2, pp. 332–339, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. V. S. Patil, P. D. Gaikwad, V. H. Bankar, and S. P. Pawar, “Formulation and evaluation of floating matrix tablet of locally acting h2-antagonist,” International Journal of Pharmacy & Technology, vol. 2, no. 3, pp. 528–540, 2010.
  24. S. Zeenath, R. Gannu, S. Bandari, and M. Y. Rao, “Development of gastroretentive systems for famotidine: in vitro characterization,” Acta Pharmaceutica Sciencia, vol. 52, no. 4, pp. 494–504, 2010. View at Scopus
  25. United States Pharmacopeia, USP32-NF27, vol. 2, The United States Pharmacopeial Convention, 2010.
  26. British Pharmacopoeia, Uniformity of Content, Volume 5, Stationery Office on Behalf of the (MHRA), London, UK, 2010.
  27. A. Pare, S. K. Yadav, and U. K. Patil, “Formulation and evaluation of effervescent floating tablet of amlodipine besylate,” Research Journal of Pharmacy and Technology, vol. 1, no. 4, pp. 526–530, 2008.
  28. I. Ahmad and R. H. Shaikh, “Effect of temperature and humidity on hardness and friability of packaged Paracetamol tablet formulations,” Pakistan Journal of Pharmaceutical Sciences, vol. 7, no. 2, pp. 69–78, 1994.
  29. K. A. Russo, “The Role of USP Monographs in Stability Testing,” in Pharmaceutical Stability Testing to Support Global Markets: Pharmasp, K. Huynh-Ba, Ed., pp. 51–60, American Association of Pharmaceutical Scientists, Arlington, Va, USA, 2010.
  30. M. Łaszcz, K. Trzcińska, K. Filip, A. Szyprowska, M. Mucha, and P. Krzeczyński, “Stability studies of capecitabine,” Journal of Thermal Analysis and Calorimetry, vol. 105, no. 3, pp. 1015–1021, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. U. S. Department of Health and Human Services, Guidance for Industry Q1A(R2) Stability Testing of New Drug Substances and Products, Food and Drug Administration, Silver Spring, Md, USA, 2003.
  32. E. A. Klausner, E. Lavy, D. Stepensky, M. Friedman, and A. Hoffman, “Novel gastroretentive dosage forms: evaluation of gastroretentivity and its effect on riboflavin absorption in dogs,” Pharmaceutical Research, vol. 19, no. 10, pp. 1516–1523, 2002.
  33. F. A. A. AI-khaled, “Bioadhesive and floating formulations as sustained release dosage form verapamil hydrochloride,” in Pharmaceutics, King Saud University, Riyadh, Saudi Arabia, 2002.
  34. S. El Samaligy, Floating Systems for Oral Controlled Release Drug Delivery, University of Berlin, Berlin, Germany, 2010.
  35. S. T. Prajapati, L. D. Patel, and D. M. Patel, “Gastric floating matrix tablets: design and optimization using combination of polymers,” Acta Pharmaceutica, vol. 58, no. 2, pp. 221–229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Siepmann and N. A. Peppas, “Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC),” Advanced Drug Delivery Reviews, vol. 64, pp. 163–174, 2012. View at Publisher · View at Google Scholar
  37. B. Y. Choi, H. J. Park, S. J. Hwang, and J. B. Park, “Preparation of alginate beads for floating drug delivery system: effects of CO2 gas-forming agents,” International Journal of Pharmaceutics, vol. 239, no. 1-2, pp. 81–91, 2002. View at Publisher · View at Google Scholar · View at Scopus
  38. A. O. Nur and J. S. Zhang, “Captopril floating and/or bioadhesive tablets: design and release kinetics,” Drug Development and Industrial Pharmacy, vol. 26, no. 9, pp. 965–969, 2000. View at Publisher · View at Google Scholar · View at Scopus
  39. R. C. Nagarwal, D. N. Ridhurkar, and J. K. Pandit, “In vitro release kinetics and bioavailability of gastroretentive cinnarizine hydrochloride tablet,” AAPS PharmSciTech, vol. 11, no. 1, pp. 294–303, 2010. View at Publisher · View at Google Scholar · View at Scopus