About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 497492, 11 pages
http://dx.doi.org/10.1155/2013/497492
Research Article

New Bioactive Fungal Molecules with High Antioxidant and Antimicrobial Capacity Isolated from Cerrena unicolor Idiophasic Cultures

Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland

Received 29 March 2013; Revised 7 June 2013; Accepted 23 June 2013

Academic Editor: Elvira Gonzalez De Mejia

Copyright © 2013 Magdalena Jaszek et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Three bioactive fractions, extracellular laccase (ex-LAC), crude endopolysaccharides (c-EPL), and a low molecular subfraction of secondary metabolites (ex-LMS), were isolated from the idiophasic cultures of the white rot fungus Cerrena unicolor. For the first time, we determined the antioxidant properties of these samples by chemiluminometric measurement (a) and assessment of the scavenging effect on ABTS (b) and the DPPH reduction rate (c). The highest reducing capability was found for the ex-LMS fraction: 39–90% for (a), 20–90% for (b), and 10–59% for (c) at the concentration of 6.25–800 µg/mL. The scavenging abilities of the C. unicolor c-EPL were between 36 and 70% for (a), 2 and 60% for (b), and 28 and 32% for (c) at the concentration of 6.25–800 µg/mL. A very high prooxidative potential was observed for the ex-LAC probes. The preliminary toxicity tests were done using the Microtox system and revealed the following percentage of the toxic effect against Vibrio fischeri: 85.37% for c-EPL, 50.67% for ex-LAC, and 99.8% for ex-LMS, respectively. The ex-LAC sample showed the antibacterial activity against Escherichia coli, c-EPL against Staphylococcus aureus, and ex-LMS against both bacterial strains, respectively, but the stronger inhibitory effect was exerted on S. aureus.