About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 501086, 9 pages
http://dx.doi.org/10.1155/2013/501086
Research Article

Ligand-Specific Regulation of the Endogenous Mu-Opioid Receptor by Chronic Treatment with Mu-Opioid Peptide Agonists

1Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, Szeged 6701, Hungary
2Department of Pathophysiology, Faculty of Medicine, University of Szeged, Szeged, Hungary

Received 30 April 2013; Revised 22 August 2013; Accepted 6 September 2013

Academic Editor: Eiichi Kumamoto

Copyright © 2013 Marianna Murányi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Zadina, L. Hackler, L. J. Ge, and A. J. Kastin, “A potent and selective endogenous agonist for the μ-opiate receptor,” Nature, vol. 386, no. 6624, pp. 499–502, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Horvath, M. Szikszay, C. Tömböly, and G. Benedek, “Antinociceptive effects of intrathecal endomorphin-1 and -2 in rats,” Life Sciences, vol. 65, no. 24, pp. 2635–2641, 1999. View at Scopus
  3. A. Keresztes, M. Szűcs, A. Borics et al., “New endomorphin analogues containing alicyclic beta-amino acids: influence on bioactive conformation and pharmacological profile,” Journal of Medicinal Chemistry, vol. 51, pp. 4270–4279, 2008.
  4. C. Tömböly, A. Péter, and G. Tóth, “In vitro quantitative study of the degradation of endomorphins,” Peptides, vol. 23, pp. 1573–1580, 2002.
  5. E. J. Nestler, B. T. Hope, and K. L. Widnell, “Drug addiction: a model for the molecular basis of neural plasticity,” Neuron, vol. 11, no. 6, pp. 995–1006, 1993. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Koch and V. Höllt, “Role of receptor internalization in opioid tolerance and dependence,” Pharmacology and Therapeutics, vol. 117, no. 2, pp. 199–206, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. J. T. Williams, S. L. Ingram, G. Henderson et al., “Regulation of μ-opioid receptors: desensitization, phosphorylation, internalization, and tolerance,” Pharmacological Reviews, vol. 65, no. 1, pp. 223–254, 2013.
  8. J. L. Whistler, “Examining the role of mu opioid receptor endocytosis in the beneficial and side-effects of prolonged opioid use: from a symposium on new concepts in mu-opioid pharmacology,” Drug and Alcohol Dependence, vol. 121, no. 3, pp. 189–204, 2012. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Nagi and G. Piñeyro, “Regulation of opioid receptor signalling: implications for the development of analgesic tolerance,” Molecular Brain, vol. 4, article 25, 2011. View at Publisher · View at Google Scholar
  10. J. R. Arden, V. Segredo, Z. Wang, J. Lameh, and W. Sadee, “Phosphorylation and agonist-specific intracellular trafficking of an epitope-tagged μ-opioid receptor expressed in HEK 293 cells,” Journal of Neurochemistry, vol. 65, no. 4, pp. 1636–1645, 1995. View at Scopus
  11. N. T. Burford, L. M. Tolbert, and W. Sadee, “Specific G protein activation and μ-opioid receptor internalization caused by morphine, DAMGO and endomorphin I,” European Journal of Pharmacology, vol. 342, no. 1, pp. 123–126, 1998. View at Publisher · View at Google Scholar · View at Scopus
  12. K. Stafford, A. B. Gomes, J. Shen, and B. C. Yoburn, “μ-opioid receptor downregulation contributes to opioid tolerance in vivo,” Pharmacology Biochemistry and Behavior, vol. 69, no. 1-2, pp. 233–237, 2001. View at Publisher · View at Google Scholar · View at Scopus
  13. Y. Qiu, P. Y. Law, and H. H. Loh, “μ-opioid receptor desensitization: role of receptor phosphorylation, internalization, and resensitization,” Journal of Biological Chemistry, vol. 278, no. 38, pp. 36733–36739, 2003. View at Publisher · View at Google Scholar · View at Scopus
  14. C. Sternini, M. Spann, B. Anton et al., “Agonist-selective endocytosis of μ opioid receptor by neurons in vivo,” Proceedings of the National Academy of Sciences of the United States of America, vol. 93, no. 17, pp. 9241–9246, 1996. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Martini and J. L. Whistler, “The role of mu opioid receptor desensitization and endocytosis in morphine tolerance and dependence,” Current Opinion in Neurobiology, vol. 17, no. 5, pp. 556–564, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Alt, A. Mansour, H. Akil, F. Medzihradsky, J. R. Traynor, and J. H. Woods, “Stimulation of guanosine-5′-O-(3-[35s]thio)triphosphate binding by endogenous opioids acting at a cloned mu receptor,” Journal of Pharmacology and Experimental Therapeutics, vol. 286, no. 1, pp. 282–288, 1998. View at Scopus
  17. J. L. Whistler and M. von Zastrow, “Morphine-activated opioid receptors elude desensitization by β-arrestin,” Proceedings of the National Academy of Sciences of the United States of America, vol. 95, no. 17, pp. 9914–9919, 1998. View at Publisher · View at Google Scholar · View at Scopus
  18. K. McConalogue, E. F. Grady, J. Minnis et al., “Activation and internalization of the μ-opioid receptor by the newly discovered endogenous agonists, endomorphin-1 and endomorphin-2,” Neuroscience, vol. 90, no. 3, pp. 1051–1059, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Duttaroy and B. C. Yoburn, “The effect of intrinsic efficacy on opioid tolerance,” Anesthesiology, vol. 82, no. 5, pp. 1226–1236, 1995. View at Scopus
  20. J. McPherson, G. Rivero, M. Baptist et al., “μ-opioid receptors: correlation of agonist efficacy for signalling with ability to activate internalization,” Molecular Pharmacology, vol. 78, no. 4, pp. 756–766, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Pawar, P. Kumar, S. Sunkaraneni, S. Sirohi, E. A. Walker, and B. C. Yoburn, “Opioid agonist efficacy predicts the magnitude of tolerance and the regulation of μ-opioid receptors and dynamin-2,” European Journal of Pharmacology, vol. 563, no. 1–3, pp. 92–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. H. Xu, J. S. Partilla, X. Wang et al., “A comparison of noninternalizing (Herkinorin) and internalizing (DAMGO) μ-opioid agonists on cellular markers related to opioid tolerance and dependence,” Synapse, vol. 61, no. 3, pp. 166–175, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. A. K. Finn and J. L. Whistler, “Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal,” Neuron, vol. 32, no. 5, pp. 829–839, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. A. R. Gintzler and S. Chakrabarti, “Opioid tolerance and the emergence of new opioid receptor-coupled signaling,” Molecular Neurobiology, vol. 21, no. 1-2, pp. 21–33, 2000. View at Scopus
  25. T. Kenakin, “Functional selectivity through protean and biased agonism: who steers the ship?” Molecular Pharmacology, vol. 72, no. 6, pp. 1393–1401, 2007. View at Publisher · View at Google Scholar · View at Scopus
  26. J. D. Urban, W. P. Clarke, M. von Zastrow et al., “Functional selectivity and classical concepts of quantitative pharmacology,” Journal of Pharmacology and Experimental Therapeutics, vol. 320, no. 1, pp. 1–13, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. Y. Wang, E. J. van Bockstaele, and L. Y. Liu-Chen, “In vivo trafficking of endogenous opioid receptors,” Life Sciences, vol. 83, no. 21-22, pp. 693–699, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. G. Fábián, B. Bozó, M. Szikszay, G. Horváth, C. J. Coscia, and M. Szücs, “Chronic morphine-induced changes in mu-opioid receptors and G proteins of different subcellular loci in rat brain,” Journal of Pharmacology and Experimental Therapeutics, vol. 302, pp. 774–780, 2002.
  29. R. Cinar, O. Kékesi, E. Birkás, G. Fábián, H. Schmidhammer, and M. Szücs, “Lack of regulatory changes of mu-opioid receptors by 14-methoxymetopon treatment in rat brain. Further evidence for functional selectivity,” Current Pharmaceutical Design. In press.
  30. B. L. Roth, M. B. Laskowski, and C. J. Coscia, “Evidence for distinct subcellular sites of opiate receptors: demonstration of opiate receptors in smooth microsomal fractions isolated from rat brain,” Journal of Biological Chemistry, vol. 256, no. 19, pp. 10117–10123, 1981. View at Scopus
  31. M. Szűcs and C. J. Coscia, “Differential coupling of opioid binding sites to guanosine triphosphate binding regulatory proteins in subcellular fractions of rat brain,” Journal of Neuroscience Research, vol. 31, no. 3, pp. 565–572, 1992. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Szabó, M. Mácsai, E. G. Kicsi et al., “Long-lasting antinociceptive effect of DAMGO chloromethyl ketone in rats,” Peptides, vol. 20, no. 11, pp. 1321–1326, 1999. View at Publisher · View at Google Scholar · View at Scopus
  33. L. J. Pellegrino, A. S. Pellegrino, and A. J. Cushman, Stereotactic Atlas of the Rat Brain, vol. 8, Plenum, New York, NY, USA, 2nd edition, 1979.
  34. R. Cinar, T. F. Freund, I. Katona, K. Mackie, and M. Szűcs, “Reciprocal inhibition of G-protein signaling is induced by CB1 cannabinoid and GABAB receptor interactions in rat hippocampal membranes,” Neurochemistry International, vol. 52, no. 8, pp. 1402–1409, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. M. M. Bradford, “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding,” Analytical Biochemistry, vol. 72, no. 1-2, pp. 248–254, 1976. View at Scopus
  36. B. Przewłocka, J. Mika, D. Łabuz, G. Toth, and R. Przewłocki, “Spinal analgesic action of endomorphins in acute, inflammatory and neuropathic pain in rats,” European Journal of Pharmacology, vol. 367, no. 2-3, pp. 189–196, 1999. View at Publisher · View at Google Scholar · View at Scopus
  37. P. Sánchez-Blázquez, M. Rodríguez-Díaz, I. DeAntonio, and J. Garzón, “Endomorphin-1 and endomorphin-2 show differences in their activation of mu opioid receptor-regulated G proteins in supraspinal antinociception in mice,” Journal of Pharmacology and Experimental Therapeutics, vol. 291, pp. 12–18, 1999.
  38. H. Xie, J. H. Woods, J. R. Traynor, and M. C. Ko, “The spinal antinociceptive effects of endomorphins in rats: behavioral and G protein functional studies,” Anesthesia and Analgesia, vol. 106, no. 6, pp. 1873–1881, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Ohsawa, H. Mizoguchi, M. Narita, M. Chu, H. Nagase, and L. F. Tseng, “Differential mechanisms mediating descending pain controls for antinociception induced by supraspinally administered endomorphin-1 and endomorphin-2 in the mouse,” Journal of Pharmacology and Experimental Therapeutics, vol. 294, no. 3, pp. 1106–1111, 2000. View at Scopus
  40. G. Rivero, J. Llorente, J. McPherson et al., “Endomorphin-2: a biased agonist at the μ-opioid receptor,” Molecular Pharmacology, vol. 82, no. 2, pp. 178–188, 2012.
  41. C. S. Breivogel, D. E. Selley, and S. R. Childers, “Acute and chronic effects of opioids on δ and μ receptor activation of G proteins in NG108-15 and SK-N-SH cell membranes,” Journal of Neurochemistry, vol. 68, no. 4, pp. 1462–1472, 1997. View at Scopus
  42. P. Sánchez-Blázquez, P. Gómez-Serranillos, and J. Garzón, “Agonists determine the pattern of G-protein activation in mu-opioid receptor-mediated supraspinal analgesia,” Brain Research Bulletin, vol. 54, no. 2, pp. 229–235, 2001.
  43. J. Garzón, M. Castro, and P. Sánchez-Blázquez, “Influence of Gz and Gi2 transducer proteins in the affinity of opioid agonists to mu receptors,” European Journal of Neuroscience, vol. 10, no. 8, pp. 2557–2564, 1998.
  44. T. J. Martin, S. I. Dworkin, and J. E. Smith, “Effects of intracerebroventricular administration of β-funaltrexamine on [3H]DAMGO binding to rat brain sections,” Journal of Pharmacology and Experimental Therapeutics, vol. 267, no. 1, pp. 506–514, 1993. View at Scopus
  45. E. Reiter, S. Ahn, A. K. Shukla, and R. J. Lefkowitz, “Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors,” Annual Review of Pharmacology and Toxicology, vol. 52, pp. 179–197, 2012. View at Publisher · View at Google Scholar · View at Scopus
  46. L. M. Bohn, R. J. Lefkowitz, R. R. Gainetdinov, K. Peppel, M. G. Caron, and F. T. Lin, “Enhanced morphine analgesia in mice lacking β-arrestin 2,” Science, vol. 286, no. 5449, pp. 2495–2498, 1999. View at Publisher · View at Google Scholar · View at Scopus