About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 501305, 8 pages
http://dx.doi.org/10.1155/2013/501305
Review Article

Clinical Genetic Testing of Periodic Fever Syndromes

1Laboratory of Immunopathology, Institute for Maternal and Child Health (IRCCS) “Burlo Garofolo”, 34137 Trieste, Italy
2Department of Medical Sciences, University of Trieste, 34100 Trieste, Italy

Received 25 October 2012; Accepted 12 December 2012

Academic Editor: Ozgur Cogulu

Copyright © 2013 Annalisa Marcuzzi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. I. Touitou and I. Koné-Paut, “Autoinflammatory diseases,” Best Practice and Research, vol. 22, no. 5, pp. 811–829, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Soriano and R. Manna, “Familial Mediterranean fever: new phenotypes,” Autoimmunity Reviews, vol. 12, no. 1, pp. 31–37, 2012.
  3. L. Cantarini, O. M. Lucherini, B. Frediani, et al., “Bridging the gap between the clinician and the patient with cryopyrin-associated periodic syndromes,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 4, pp. 827–836, 2011.
  4. P. J. Hashkes and O. Toker, “Autoinflammatory syndromes,” Pediatric Clinics of North America, vol. 59, no. 2, pp. 447–470, 2012.
  5. K. T. Thomas, H. M. Feder Jr., A. R. Lawton, and K. M. Edwards, “Periodic fever syndrome in children,” Journal of Pediatrics, vol. 135, no. 1, pp. 15–21, 1999. View at Scopus
  6. S. Padeh, “Periodic fever syndromes,” Pediatric Clinics of North America, vol. 52, no. 2, pp. 577–609, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Piram, J. Frenkel, M. Gattorno et al., “A preliminary score for the assessment of disease activity in hereditary recurrent fevers: results from the AIDAI (Auto-Inflammatory Diseases Activity Index) consensus conference,” Annals of the Rheumatic Diseases, vol. 70, no. 2, pp. 309–314, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. N. Toplak, J. Frenkel, S. Ozen, et al., “An international registry on autoinflammatory diseases: the Eurofever experience,” Annals of the Rheumatic Diseases, vol. 71, no. 7, pp. 1177–1182, 2012.
  9. S. Savic, L. J. Dickie, M. Wittmann, and M. F. McDermott, “Autoinflammatory syndromes and cellular responses to stress: pathophysiology, diagnosis and new treatment perspectives,” Best Practice & Research Clinical Rheumatology, vol. 26, no. 4, pp. 505–533, 2012.
  10. L. J. Dickie, S. Savic, A. Aziz, M. Sprakes, and M. F. McDermott, “Periodic fever syndrome and autoinflammatory diseases,” F1000 Medicine Reports, vol. 2, no. 1, article 3, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. M. Gattorno, R. Caorsi, A. Meini et al., “Differentiating PFAPA syndrome from monogenic periodic fevers,” Pediatrics, vol. 124, no. 4, pp. e721–e728, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Ben-Chetrit and I. Touitou, “Familial mediterranean fever in the world,” Arthritis Care and Research, vol. 61, no. 10, pp. 1447–1453, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. E. Ben-Chetrit and M. Levy, “Familial Mediterranean fever,” The Lancet, vol. 351, no. 9103, pp. 659–664, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Lachmann, “Clinical immunology review series: an approach to the patient with a periodic fever syndrome,” Clinical and Experimental Immunology, vol. 165, no. 3, pp. 301–309, 2011. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Sayarlioglu, A. Cefle, M. Inanc et al., “Characteristics of patients with adult-onset familial Mediterranean fever in Turkey: analysis of 401 cases,” International Journal of Clinical Practice, vol. 59, no. 2, pp. 202–205, 2005. View at Publisher · View at Google Scholar · View at Scopus
  16. I. Muscari, F. Iacoponi, L. Cantarini, et al., “The diagnostic evaluation of patients with potential adult-onset autoinflammatory disorders: our experience and review of the literature,” Autoimmunity Reviews, vol. 12, no. 1, pp. 10–13, 2012.
  17. L. Cantarini, F. Iacoponi, O. M. Lucherini, et al., “Validation of a diagnostic score for the diagnosis of autoinflammatory diseases in adults,” International Journal of Immunopathology and Pharmacology, vol. 24, no. 3, pp. 695–702, 2011.
  18. D. L. Kastner, “Familial mediterranean fever: the genetics of inflammation,” Hospital Practice, vol. 33, no. 4, pp. 131–134, 139–140, 143–146, 1998. View at Scopus
  19. I. Touitou, T. Sarkisian, M. Medlej-Hashim et al., “Country as the primary risk factor for renal amyloidosis in familial Mediterranean fever,” Arthritis & Rheumatism, vol. 56, no. 5, pp. 1706–1712, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. M. La Regina, G. Nucera, M. Diaco et al., “Familial Mediterranean fever is no longer a rare disease in Italy,” European Journal of Human Genetics, vol. 11, no. 1, pp. 50–56, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. J. C. H. van der Hilst, A. Simon, and J. P. H. Drenth, “Hereditary periodic fever and reactive amyloidosis,” Clinical and Experimental Medicine, vol. 5, no. 3, pp. 87–98, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Lidar, J. M. Scherrmann, Y. Shinar et al., “Colchicine nonresponsiveness in familial Mediterranean fever: clinical, genetic, pharmacokinetic, and socioeconomic characterization,” Seminars in Arthritis and Rheumatism, vol. 33, no. 4, pp. 273–282, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. G. Guz, M. Kanbay, and M. A. Ozturk, “Current perspectives on familial mediterranean fever,” Current Opinion in Infectious Diseases, vol. 22, no. 3, pp. 309–315, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Caorsi, S. Federici, and M. Gattorno, “Biologic drugs in autoinflammatory syndromes,” Autoimmunity Reviews, vol. 12, no. 1, pp. 81–86, 2012.
  25. J. W. M. van der Meer, J. M. Vossen, and J. Radl, “Hyperimmunoglobulinemia D and periodic fever: a new syndrome,” The Lancet, vol. 1, no. 8386, pp. 1087–1090, 1984. View at Scopus
  26. J. P. H. Drenth, C. J. Haagsma, J. W. M. van der Meer et al., “Hyperimmunoglobulinemia D and periodic fever syndrome. The clinical spectrum in a series of 50 patients,” Medicine, vol. 73, no. 3, pp. 133–144, 1994. View at Scopus
  27. M. Cailliez, F. Garaix, C. Rousset-Rouvière et al., “Anakinra is safe and effective in controlling hyperimmunoglobulinaemia D syndrome-associated febrile crisis,” Journal of Inherited Metabolic Disease, vol. 29, no. 6, p. 763, 2006. View at Scopus
  28. J. C. H. van der Hilst, E. J. Bodar, K. S. Barron et al., “Long-term follow-up, clinical features, and quality of life in a series of 103 patients with hyperimmunoglobulinemia D syndrome,” Medicine, vol. 87, no. 6, pp. 301–310, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. A. Marcuzzi, E. Piscianz, M. Girardelli, S. Crovella, and A. Pontillo, “Defect in mevalonate pathway induces pyroptosis in Raw 264.7 murine monocytes,” Apoptosis, vol. 16, no. 9, pp. 882–888, 2011.
  30. A. Marcuzzi, V. Zanin, E. Piscianz, et al., “Lovastatin-induced apoptosis is modulated by geranylgeraniol in a neuroblastoma cell line,” International Journal of Developmental Neuroscience, vol. 30, no. 6, pp. 451–456, 2012.
  31. L. M. Williamson, D. Hull, R. Mehta, W. G. Reeves, B. H. Robinson, and P. J. Toghill, “Familial hibernian fever,” The Quarterly Journal of Medicine, vol. 51, no. 204, pp. 469–480, 1982. View at Scopus
  32. M. F. McDermott, I. Aksentijevich, J. Galon et al., “Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes,” Cell, vol. 97, no. 1, pp. 133–144, 1999. View at Scopus
  33. J. R. Toro, I. Aksentijevich, K. Hull, J. Dean, and D. L. Kastner, “Tumor necrosis factor receptor-associated periodic syndrome: a novel syndrome with cutaneous manifestations,” Archives of Dermatology, vol. 136, no. 12, pp. 1487–1494, 2000. View at Scopus
  34. V. J. Derbes and W. P. Coleman, “Familial cold urticaria,” Annals of Allergy, vol. 30, no. 6, pp. 335–341, 1972. View at Scopus
  35. H. M. Hoffman, J. L. Mueller, D. H. Broide, A. A. Wanderer, and R. D. Kolodner, “Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle-Wells syndrome,” Nature Genetics, vol. 29, no. 3, pp. 301–305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Feldmann, A. M. Prieur, P. Quartier et al., “Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes,” American Journal of Human Genetics, vol. 71, no. 1, pp. 198–203, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. I. Jéru, P. Duquesnoy, T. Fernandes-Alnemri et al., “Mutations in NALP12 cause hereditary periodic fever syndromes,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 5, pp. 1614–1619, 2008. View at Publisher · View at Google Scholar · View at Scopus
  38. H. M. Doeglas and E. Bleumink, “Familial cold urticaria. Clinical findings,” Archives of Dermatology, vol. 110, no. 3, pp. 382–388, 1974. View at Publisher · View at Google Scholar · View at Scopus
  39. H. M. Hoffman, A. A. Wanderer, and D. H. Broide, “Familial cold autoinflammatory syndrome: phenotype and genotype of an autosomal dominant periodic fever,” Journal of Allergy and Clinical Immunology, vol. 108, no. 4, pp. 615–620, 2001. View at Publisher · View at Google Scholar · View at Scopus
  40. K. L. Williams, J. D. Lich, J. A. Duncan et al., “The CATERPILLER protein Monarch-1 is an antagonist of toll-like receptor-, tumor necrosis factor α-, and Mycobacterium tuberculosis-induced pro-inflammatory signals,” Journal of Biological Chemistry, vol. 280, no. 48, pp. 39914–39924, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. S. L. Masters, A. Simon, I. Aksentijevich, and D. L. Kastner, “Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease,” Annual Review of Immunology, vol. 27, pp. 621–668, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. S. Borghini, S. Tassi, S. Chiesa et al., “Clinical presentation and pathogenesis of cold-induced autoinflammatory disease in a family with recurrence of an NLRP12 mutation,” Arthritis & Rheumatism, vol. 63, no. 3, pp. 830–839, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. G. S. Marshall, K. M. Edwards, J. Butler, and A. R. Lawton, “Syndrome of periodic fever, pharyngitis, and aphthous stomatitis,” Journal of Pediatrics, vol. 110, no. 1, pp. 43–46, 1987. View at Scopus
  44. S. Peridis, G. Pilgrim, E. Koudoumnakis, I. Athanasopoulos, M. Houlakis, and K. Parpounas, “PFAPA syndrome in children: a meta-analysis on surgical versus medical treatment,” International Journal of Pediatric Otorhinolaryngology, vol. 74, no. 11, pp. 1203–1208, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. G. Vigo and F. Zulian, “Periodic fevers with aphthous stomatitis, pharyngitis, and adenitis (PFAPA),” Autoimmunity Reviews, vol. 12, no. 1, pp. 52–55, 2012.
  46. W. Garavello, M. Romagnoli, and R. M. Gaini, “Effectiveness of adenotonsillectomy in PFAPA syndrome: a randomized study,” Journal of Pediatrics, vol. 155, no. 2, pp. 250–253, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. F. S. Sutterwala, Y. Ogura, M. Szczepanik et al., “Critical role for NALP3/CIAS1/cryopyrin in innate and adaptive immunity through its regulation of caspase-1,” Immunity, vol. 24, no. 3, pp. 317–327, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. M. Saito, R. Nishikomori, N. Kambe et al., “Disease-associated CIAS1 mutations induce monocyte death, revealing low-level mosaicism in mutation-negative cryopyrin-associated periodic syndrome patients,” Blood, vol. 111, no. 4, pp. 2132–2141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  49. J. W. Yu, J. Wu, Z. Zhang et al., “Cryopyrin and pyrin activate caspase-1, but not NF-κB, via ASC oligomerization,” Cell Death and Differentiation, vol. 13, no. 2, pp. 236–249, 2006. View at Publisher · View at Google Scholar · View at Scopus
  50. E. Mansfield, J. J. Chae, H. D. Komarow et al., “The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments,” Blood, vol. 98, no. 3, pp. 851–859, 2001. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Marcuzzi, S. Crovella, L. Monasta, L. V. Brumatti, M. Gattorno, and J. Frenkel, “Mevalonate kinase deficiency: disclosing the role of mevalonate pathway modulation in inflammation,” Current Pharmaceutical Design, vol. 18, no. 35, pp. 5746–5752, 2012.
  52. V. Zanin, A. Marcuzzi, E. Piscianz, et al., “The effect of clodronate on a mevalonate kinase deficiency cellular model,” Inflammation Research, vol. 61, no. 12, pp. 1363–1367, 2012.
  53. K. M. Hull, E. Drewe, I. Aksentijevich et al., “The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder,” Medicine, vol. 81, no. 5, pp. 349–368, 2002. View at Publisher · View at Google Scholar · View at Scopus
  54. P. Anton-Martin, R. O. Movilla, S. G. Martin, et al., “PFAPA syndrome in siblings. Is there a genetic background?” European Journal of Pediatrics, vol. 170, no. 12, pp. 1563–1568, 2011.
  55. L. Kolly, N. Busso, A. von Scheven-Gete, et al., “Periodic fever, aphthous stomatitis, pharyngitis, cervical adenitis syndrome is linked to dysregulated monocyte IL-1beta production,” The Journal of Allergy and Clinical Immunology. In press.
  56. A. D'Osualdo, P. Picco, F. Caroli et al., “MVK mutations and associated clinical features in Italian patients affected with autoinflammatory disorders and recurrent fever,” European Journal of Human Genetics, vol. 13, no. 3, pp. 314–320, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. A. D'Osualdo, F. Ferlito, I. Prigione et al., “Neutrophils from patients with TNFRSF1A mutations display resistance to tumor necrosis factor-induced apoptosis: pathogenetic and clinical implications,” Arthritis & Rheumatism, vol. 54, no. 3, pp. 998–1008, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Gattorno, M. P. Sormani, A. D'Osualdo et al., “A diagnostic score for molecular analysis of hereditary autoinflammatory syndromes with periodic fever in children,” Arthritis & Rheumatism, vol. 58, no. 6, pp. 1823–1832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. L. Federici, C. Rittore-Domingo, I. Koné-Paut et al., “A decision tree for genetic diagnosis of hereditary periodic fever in unselected patients,” Annals of the Rheumatic Diseases, vol. 65, no. 11, pp. 1427–1432, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. E. Lainka, U. Neudorf, P. Lohse et al., “Familial Mediterranean fever in Germany: epidemiological, clinical, and genetic characteristics of a pediatric population,” European Journal of Pedaitrics, vol. 171, no. 12, pp. 1775–1785, 2012.
  61. D. Tchernitchko, S. Moutereau, M. Legendre et al., “MEFV analysis is of particularly weak diagnostic value for recurrent fevers in western European Caucasian patients,” Arthritis & Rheumatism, vol. 52, no. 11, pp. 3603–3605, 2005. View at Publisher · View at Google Scholar · View at Scopus
  62. K. Krause, C. E. Grattan, C. Bindslev-Jensen, et al., “How not to miss autoinflammatory diseases masquerading as urticaria,” Allergy, vol. 67, no. 12, pp. 1465–1474, 2012.
  63. B. Bortot, E. Athanasakis, F. Brun, et al., “High-throughput genotyping robot-assisted method for mutation detection in patients with hypertrophic cardiomyopathy,” Diagnostic Molecular Pathology, vol. 20, no. 3, pp. 175–179, 2011.
  64. T. J. Dixon-Salazar, J. L. Silhavy, N. Udpa, et al., “Exome sequencing can improve diagnosis and alter patient management,” Science Translational Medicine, vol. 4, no. 138, Article ID 138ra178, 2012.
  65. A. Altmann, P. Weber, D. Bader, M. Preuss, E. B. Binder, and B. Muller-Myhsok, “A beginners guide to SNP calling from high-throughput DNA-sequencing data,” Human Genetics, vol. 131, no. 10, pp. 1541–1554, 2012.
  66. P. Kothiyal, S. Cox, J. Ebert, B. J. Aronow, J. H. Greinwald, and H. L. Rehm, “An overview of custom array sequencing,” in Current Protocols in Human Genetics, Unit 7, chapter 7, p. 17, 2009.
  67. Q. Zhou, G. S. Lee, J. Brady, et al., “A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency,” American Journal of Human Genetics, vol. 91, no. 4, pp. 713–720, 2012.
  68. R. Thompson, C. J. Drew, and R. H. Thomas, “Next generation sequencing in the clinical domain: clinical advantages, practical, and ethical challenges,” Advances in Protein Chemistry and Structural Biology, vol. 89, pp. 27–63, 2012.