About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 503095, 7 pages
http://dx.doi.org/10.1155/2013/503095
Research Article

Affinity Labeling of Membrane Receptors Using Tissue-Penetrating Radiations

1Nuclear Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
2Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030-4009, USA
3Department of Radiology, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
4University of Texas MD Anderson Cancer Center, 1400 Pressler, Unit 1483, Houston, TX 77030-4009, USA
5Addiction Research Center, National Institute of Drug Abuse, Baltimore, MD 21224, USA
6U.S. Consumer Product Safety Commission, Bethesda, MD 20814, USA
7Neuropharmacology, Yerkes National Primate Research Center of Emory University, Atlanta, GA 30322, USA
8Radiology, Psychiatry, Neuroscience, Environmental Health Science, and Carey Business School, Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA

Received 15 April 2013; Revised 6 June 2013; Accepted 13 June 2013

Academic Editor: Mei-Hsiu Liao

Copyright © 2013 Franklin C. Wong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Bayley and J. R. Knowles, “Photogenerated, hydrophobic reagents for intrinsic membrane proteins,” Annals of the New York Academy of Sciences, vol. 346, pp. 45–58, 1980. View at Scopus
  2. W. Cohen, S. V. Chau, P. R. Kastl, and D. R. Caldwell, “X-ray affinity and photoaffinity inhibitor of aldose reductase,” Journal of Ocular Pharmacology, vol. 2, no. 2, pp. 151–158, 1986. View at Scopus
  3. F. I. Carroll, A. Philip, and A. H. Lewing, “Cocaine receptor. Design of ligands,” NIDA Research Monograph Series, no. 96, pp. 112–121, 1990. View at Scopus
  4. D. F. Wong, E. P. Broussolle, G. Wand et al., “In vivo measurement of dopamine receptors in human brain by positron emission tomography. Age and sex differences,” Annals of the New York Academy of Sciences, vol. 515, pp. 203–214, 1987. View at Scopus
  5. C. Muhr, M. Bergstrom, and P. O. Lundberg, “Dopamine receptors in pituitary adenomas: PET visualization with 11C-N-methylspiperone,” Journal of Computer Assisted Tomography, vol. 10, no. 2, pp. 175–180, 1986. View at Scopus
  6. B. C. K. Yung, G. S. Wand, L. Blevins, et al., “In vivo assessment of dopamine receptor density in pituitary macroadenoma and correlation with in vitro assay,” Journal of Nuclear Medicine, vol. 34, p. 133, 1993.
  7. H. B. Niznik, J. H. Guan, J. L. Neumeyer, and P. Seeman, “A photoaffinity ligand for dopamine D2 receptors: azidoclebopride,” Molecular Pharmacology, vol. 27, no. 2, pp. 193–199, 1985. View at Scopus
  8. H. B. Niznik, A. Dumbrille-Ross, and J. H. Guan, “Dopamine D2 receptors photolabeled by iodo-acido-clebopride,” Neuroscience Letters, vol. 55, no. 3, pp. 267–272, 1985. View at Publisher · View at Google Scholar · View at Scopus
  9. M. Gavish, Y. Katz, S. Bar-Ami, and R. Weizman, “Biochemical, physiological, and pathological aspects of the peripheral benzodiazepine receptor,” Journal of Neurochemistry, vol. 58, no. 5, pp. 1589–1601, 1992. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Junck, J. M. M. Olson, B. J. Ciliax et al., “PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site,” Annals of Neurology, vol. 26, no. 6, pp. 752–758, 1989. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Pappata, P. Cornu, Y. Samson et al., “PET study of carbon-11-PK 11195 binding to peripheral type benzodiazepine sites in glioblastoma: a case report,” Journal of Nuclear Medicine, vol. 32, no. 8, pp. 1608–1610, 1991. View at Scopus
  12. J. Benavides, A. Dubois, T. Dennis, E. Hamel, and B. Scatton, “Omega3 (peripheral type benzodiazepine binding) site distribution in the rat immune system: an autoradiographic study with the photoaffinity ligand [3H]PK 14105,” Journal of Pharmacology and Experimental Therapeutics, vol. 249, no. 1, pp. 333–339, 1989. View at Scopus
  13. R. Skowronski, D. D. Fanestil, and K. Beaumont, “Photoaffinity labeling of peripheral-type benzodiazepine receptors in rat kidney mitochondria with [3H]PK 14105,” European Journal of Pharmacology, vol. 148, no. 2, pp. 187–193, 1988. View at Scopus
  14. F. I. Braginskaya and O. M. Zorina, “Comparative study on the therapeutic ultrasound effects on erythrocyte membrane-bound and free acetylcholinesterase,” Radiation and Environmental Biophysics, vol. 26, no. 3, pp. 239–249, 1987. View at Scopus
  15. S. Umemura, N. Yumita, and R. Nishigaki, “Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70,” Japanese Journal of Cancer Research, vol. 84, no. 5, pp. 582–588, 1993. View at Scopus
  16. N. Yumita, R. Nishigaki, K. Umemura, and S. Umemura, “Synergistic effect of ultrasound and hematoporphyrin on sarcoma 180,” Japanese Journal of Cancer Research, vol. 81, no. 3, pp. 304–308, 1990. View at Scopus
  17. P. Riesz and T. Kondo, “Free radical formation induced by ultrasound and its biological implications,” Free Radical Biology and Medicine, vol. 13, no. 3, pp. 247–270, 1992. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Umemura, N. Yumita, R. Nishigaki, and K. Umemura, “Mechanism of cell damage by ultrasound in combination with hematoporphyrin,” Japanese Journal of Cancer Research, vol. 81, no. 9, pp. 962–966, 1990. View at Scopus
  19. F. I. Carroll, M. Abdur Rahman, A. Philip, A. H. Lewin, J. W. Boja, and M. J. Kuhar, “Synthesis and receptor binding of cocaine analogs,” NIDA Research Monograph Series, no. 105, pp. 147–153, 1990. View at Scopus
  20. M. S. Kleven, B. D. Perry, W. L. Woolverton, and L. S. Seiden, “Effects of repeated injections of cocaine on D1 and D2 dopamine receptors in rat brain,” Brain Research, vol. 532, no. 1-2, pp. 265–270, 1990. View at Scopus
  21. G. W. Price, R. G. Ahier, S. P. Hume et al., “In vivo binding to peripheral benzodiazepine binding sites in lesioned rat brain: comparison between [3H]PK11195 and [18F]PK14105 as markers for neuronal damage,” Journal of Neurochemistry, vol. 55, no. 1, pp. 175–185, 1990. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Doble, O. Ferris, and M. C. Burgevin, “Photoaffinity labeling of peripheral-type benzodiazepine-binding sites,” Molecular Pharmacology, vol. 31, no. 1, pp. 42–49, 1987. View at Scopus
  23. A. Zulian, J. Sileikyte, V. Petronilli, et al., “The translocator protein (peripheral benzodiazepine receptor) mediates rat-selective activation of the mitochondrial permeability transition by norbormide,” Biochimica et Biophysica Acta, vol. 1807, no. 12, pp. 1600–1605, 2011. View at Publisher · View at Google Scholar
  24. S. Murail, J. C. Robert, Y. M. Coic, et al., “Secondary and tertiary structures of the transmembrane domains of the translocator protein TSPO determined by NMR. Stabilization of the TSPO tertiary fold upon ligand binding,” Biochimica et Biophysica Acta, vol. 1778, no. 6, pp. 1375–1381, 2008. View at Publisher · View at Google Scholar