About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 510905, 11 pages
http://dx.doi.org/10.1155/2013/510905
Research Article

Ovarian and Breast Cancer Spheres Are Similar in Transcriptomic Features and Sensitive to Fenretinide

1Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Shanghai Jiao Tong University School of Medicine (SJTU-SM), 225 Chong-Qing South Road, Shanghai 200025, China
2Graduate School of the Chinese Academy of Sciences, Beijing 100049, China

Received 17 April 2013; Revised 16 August 2013; Accepted 18 August 2013

Academic Editor: George Perry

Copyright © 2013 Haiwei Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Bonnet and J. E. Dick, “Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell,” Nature Medicine, vol. 3, no. 7, pp. 730–737, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Al-Hajj, M. S. Wicha, A. Benito-Hernandez, S. J. Morrison, and M. F. Clarke, “Prospective identification of tumorigenic breast cancer cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3983–3988, 2003. View at Publisher · View at Google Scholar · View at Scopus
  3. S. K. Singh, C. Hawkins, I. D. Clarke et al., “Identification of human brain tumour initiating cells,” Nature, vol. 432, no. 7015, pp. 396–401, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. C. A. O'Brien, A. Pollett, S. Gallinger, and J. E. Dick, “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice,” Nature, vol. 445, no. 7123, pp. 106–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. P. C. Hermann, S. L. Huber, T. Herrler et al., “Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer,” Cell Stem Cell, vol. 1, no. 3, pp. 313–323, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Zhang, C. Balch, M. W. Chan et al., “Identification and characterization of ovarian cancer-initiating cells from primary human tumors,” Cancer Research, vol. 68, no. 11, pp. 4311–4320, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. R. Bjerkvig, B. B. Tysnes, K. S. Aboody, J. Najbauer, and A. J. A. Terzis, “The origin of the cancer stem cell: current controversies and new insights,” Nature Reviews Cancer, vol. 5, no. 11, pp. 899–904, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. M. Diehn, R. W. Cho, N. A. Lobo et al., “Association of reactive oxygen species levels and radioresistance in cancer stem cells,” Nature, vol. 458, no. 7239, pp. 780–783, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. P. B. Gupta, T. T. Onder, G. Jiang et al., “Identification of selective inhibitors of cancer stem cells by high-throughput screening,” Cell, vol. 138, no. 4, pp. 645–659, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. D. Burgos-Ojeda, B. R. Rueda, and R. J. Buckanovich, “Ovarian cancer stem cell markers: prognostic and therapeutic implications,” Cancer Letters, vol. 311, no. 1, pp. 1–7, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Dontu, W. M. Abdallah, J. M. Foley et al., “In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells,” Genes and Development, vol. 17, no. 10, pp. 1253–1270, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. L. Ricci-Vitiani, D. G. Lombardi, E. Pilozzi et al., “Identification and expansion of human colon-cancer-initiating cells,” Nature, vol. 445, no. 7123, pp. 111–115, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. Z. Su, W. S. Graybill, and Y. Zhu, “Detection and monitoring of ovarian cancer,” Clinica Chimica Acta, vol. 415, pp. 341–345, 2013. View at Publisher · View at Google Scholar
  14. M. C. King, J. H. Marks, and J. B. Mandell, “Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2,” Science, vol. 302, no. 5645, pp. 643–646, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. D. J. Slamon, W. Godolphin, L. A. Jones et al., “Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer,” Science, vol. 244, no. 4905, pp. 707–712, 1989. View at Scopus
  16. P. E. Schwartz, J. T. Chambers, E. I. Kohorn et al., “Tamoxifen in combination with cytotoxic chemotherapy in advanced epithelial ovarian cancer. A prospective randomized trial,” Cancer, vol. 63, no. 6, pp. 1074–1078, 1989. View at Scopus
  17. A. Latifi, K. Abubaker, N. Castrechini et al., “Cisplatin treatment of primary and metastatic epithelial ovarian carcinomas generates residual cells with mesenchymal stem cell-like profile,” Journal of Cellular Biochemistry, vol. 112, no. 10, pp. 2850–2864, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Ulukaya and E. J. Wood, “Fenretinide and its relation to cancer,” Cancer Treatment Reviews, vol. 25, no. 4, pp. 229–235, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. W. Malone, M. Perloff, J. Crowell, C. Sigman, and H. Higley, “Fenretinide: a prototype cancer prevention drug,” Expert Opinion on Investigational Drugs, vol. 12, no. 11, pp. 1829–1842, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. P. E. Lovat, M. Ranalli, M. Corazzari et al., “Mechanisms of free-radical induction in relation to fenretinide-induced apoptosis of neuroblastoma,” Journal of Cellular Biochemistry, vol. 89, no. 4, pp. 698–708, 2003. View at Publisher · View at Google Scholar · View at Scopus
  21. N. Hail Jr., H. J. Kim, and R. Lotan, “Mechanisms of fenretinide-induced apoptosis,” Apoptosis, vol. 11, no. 10, pp. 1677–1694, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. Y. Du, Y. Xia, X. Pan, et al., “Fenretinide targets chronic myeloid leukemia stem/progenitor cells by regulation of redox signaling,” Antioxidants and Redox Signaling, 2013. View at Publisher · View at Google Scholar
  23. The Gene Ontology Consortium, “The gene ontology project in 2008,” Nucleic Acids Research, vol. 36, supplement 1, pp. D440–D444, 2008. View at Publisher · View at Google Scholar
  24. W. Miller, K. Rosenbloom, R. C. Hardison et al., “28-Way vertebrate alignment and conservation track in the UCSC genome browser,” Genome Research, vol. 17, no. 12, pp. 1797–1808, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Yoshizumi, J. Fujiwara, A. Yoshizaki, M. Sato, R. Sakai, and I. Nishiya, “Cytokinetic effects of carboplatin and cisplatin on a human ovarian cancer cell line,” Human Cell, vol. 1, no. 3, pp. 301–307, 1988. View at Scopus
  26. V. Vathipadiekal, D. Saxena, S. C. Mok, P. V. Hauschka, L. Ozbun, and M. J. Birrer, “Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer,” PLoS ONE, vol. 7, no. 1, Article ID e29079, 2012. View at Publisher · View at Google Scholar · View at Scopus
  27. C. K. McCann, W. B. Growdon, K. Kulkarni-Datar et al., “Inhibition of hedgehog signaling antagonizes serous ovarian cancer growth in a primary xenograft model,” PLoS ONE, vol. 6, no. 11, Article ID e28077, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Wickstrom, C. Dyberg, T. Shimokawa et al., “Targeting the hedgehog signal transduction pathway at the level of GLI inhibits neuroblastoma cell growth in vitro and in vivo,” International Journal of Cancer, vol. 132, no. 7, pp. 1516–1524, 2013. View at Publisher · View at Google Scholar
  29. A. D. Steg, K. S. Bevis, A. A. Katre et al., “Stem cell pathways contribute to clinical chemoresistance in ovarian cancer,” Clinical Cancer Research, vol. 18, no. 3, pp. 869–881, 2012. View at Publisher · View at Google Scholar · View at Scopus
  30. N. Y. Frank, A. Margaryan, Y. Huang et al., “ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma,” Cancer Research, vol. 65, no. 10, pp. 4320–4333, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. K. M. Britton, R. Eyre, I. J. Harvey et al., “Breast cancer, side population cells and ABCG2 expression,” Cancer Letters, vol. 323, no. 1, pp. 97–105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. M. J. Grimshaw, L. Cooper, K. Papazisis et al., “Mammosphere culture of metastatic breast cancer cells enriches for tumorigenic breast cancer cells,” Breast Cancer Research, vol. 10, no. 3, article R52, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. C. Ginestier, M. H. Hur, E. Charafe-Jauffret et al., “ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome,” Cell Stem Cell, vol. 1, no. 5, pp. 555–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Heuser, L. M. Sly, B. Argiropoulos et al., “Modeling the functional heterogeneity of leukemia stem cells: role of STAT5 in leukemia stem cell self-renewal,” Blood, vol. 114, no. 19, pp. 3983–3993, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. L. Y. W. Bourguignon, K. Peyrollier, W. Xia, and E. Gilad, “Hyaluronan-CD44 interaction activates stem cell marker Nanog, Stat-3-mediated MDR1 gene expression, and ankyrin-regulated multidrug efflux in breast and ovarian tumor cells,” The Journal of Biological Chemistry, vol. 283, no. 25, pp. 17635–17651, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Wu, J. P. Williams, T. A. Rizvi et al., “Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells,” Cancer Cell, vol. 13, no. 2, pp. 105–116, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. E. E. Ibrahim, R. Babaei-Jadidi, A. Saadeddin et al., “Embryonic NANOG activity defines colorectal cancer stem cells and modulates through AP1- and TCF-dependent mechanisms,” Stem Cells, vol. 30, no. 10, pp. 2076–2087. View at Publisher · View at Google Scholar
  38. H. Zhang, J. Q. Mi, H. Fang et al., “Preferential eradication of acute myelogenous leukemia stem cells by fenretinide,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 14, pp. 5606–5611.
  39. U. Veronesi, G. de Palo, E. Marubini et al., “Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer,” Journal of the National Cancer Institute, vol. 91, no. 21, pp. 1847–1856, 1999. View at Scopus
  40. D. Trachootham, J. Alexandre, and P. Huang, “Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?” Nature Reviews Drug Discovery, vol. 8, no. 7, pp. 579–591, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. N. Oridate, S. Suzuki, M. Higuchi, M. F. Mitchell, W. K. Hong, and R. Lotan, “Involvement of reactive oxygen species in N-(4-hydroxyphenyl)retinamide-induced apoptosis in cervical carcinoma cells,” Journal of the National Cancer Institute, vol. 89, no. 16, pp. 1191–1198, 1997. View at Scopus
  42. K. Wang, H. Fang, D. Xiao et al., “Converting redox signaling to apoptotic activities by stress-responsive regulators HSF1 and NRF2 in fenretinide treated cancer cells,” PLoS ONE, vol. 4, no. 10, Article ID e7538, 2009. View at Publisher · View at Google Scholar · View at Scopus
  43. L. Jiang, X. Pan, Y. Chen, K. Wang, Y. Du, and J. Zhang, “Preferential involvement of both ROS and ceramide in fenretinide-induced apoptosis of HL60 rather than NB4 and U937 cells,” Biochemical and Biophysical Research Communications, vol. 405, no. 2, pp. 314–318, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. H. Yu, G. Y. Chiou, P. I. Huang et al., “Network biology of tumor stem-like cells identified a regulatory role of CBX5 in lung cancer,” Scientific Reports, vol. 2, article 584, 2012. View at Publisher · View at Google Scholar
  45. C. Tringali, F. Cirillo, G. Lamorte et al., “NEU4L sialidase overexpression promotes β-catenin signaling in neuroblastoma cells, enhancing stem-like malignant cell growth,” International Journal of Cancer, vol. 131, no. 8, pp. 1768–1778, 2012. View at Publisher · View at Google Scholar · View at Scopus