About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 512086, 14 pages
http://dx.doi.org/10.1155/2013/512086
Research Article

Systems Approaches Evaluating the Perturbation of Xenobiotic Metabolism in Response to Cigarette Smoke Exposure in Nasal and Bronchial Tissues

Philip Morris International R&D, Philip Morris Products SA, Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland

Received 17 June 2013; Revised 14 August 2013; Accepted 16 August 2013

Academic Editor: Tao Huang

Copyright © 2013 Anita R. Iskandar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. J. Omiecinski, J. P. Vanden Heuvel, G. H. Perdew, and J. M. Peters, “Xenobiotic metabolism, disposition, and regulation by receptors: from biochemical phenomenon to predictors of major toxicities,” Toxicological Sciences, vol. 120, supplement 1, pp. S49–S75, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Sharma, K. Saurabh, S. Yadav, S. K. Jain, and D. Parmar, “Expression profiling of selected genes of toxication and detoxication pathways in peripheral blood lymphocytes as a biomarker for predicting toxicity of environmental chemicals,” International Journal of Hygiene and Environmental Health, 2012. View at Publisher · View at Google Scholar
  3. S. S. Hecht, “DNA adduct formation from tobacco-specific N-nitrosamines,” Mutation Research, vol. 424, no. 1-2, pp. 127–142, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Li, P. F. Firozi, L.-E. Wang et al., “Sensitivity to DNA damage induced by benzo(a)pyrene diol epoxide and risk of lung cancer: a case-control analysis,” Cancer Research, vol. 61, no. 4, pp. 1445–1450, 2001. View at Scopus
  5. T. Shimada, “Xenobiotic-metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons,” Drug Metabolism and Pharmacokinetics, vol. 21, no. 4, pp. 257–276, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. N. M. DeVore and E. E. Scott, “Nicotine and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone binding and access channel in human cytochrome P450 2A6 and 2A13 enzymes,” The Journal of Biological Chemistry, vol. 287, no. 32, pp. 26576–26585, 2012. View at Publisher · View at Google Scholar
  7. J. Hukkanen, P. Jacob III, and N. L. Benowitz, “Metabolism and disposition kinetics of nicotine,” Pharmacological Reviews, vol. 57, no. 1, pp. 79–115, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Kim, K. H. Stansbury, N. J. Walker, M. A. Trush, P. T. Strickland, and T. R. Sutter, “Metabolism of benzo[a]pyrene and benzo[a]pyrene-7,8-diol by human cytochrome P450 1B1,” Carcinogenesis, vol. 19, no. 10, pp. 1847–1853, 1999. View at Scopus
  9. R. Piipari, K. Savela, T. Nurminen, et al., “Expression of CYP1A1, CYP1B1 and CYP3A, and polycyclic aromatic hydrocarbon-DNA adduct formation in bronchoalveolar macrophages of smokers and non-smokers,” International Journal of Cancer, vol. 86, no. 5, pp. 610–616, 2000.
  10. D. H. Phillips, B. Schoket, A. Hewer, E. Bailey, S. Kostic, and I. Vincze, “Influence of cigarette smoking on the levels of DNA adducts in human bronchial epithelium and white blood cells,” International Journal of Cancer, vol. 46, no. 4, pp. 569–575, 1990. View at Scopus
  11. E. Croom, “Metabolism of xenobiotics of human environments,” Progress in Molecular Biology and Translational Science, vol. 112, pp. 31–88, 2012.
  12. Y. An, A. Kiang, J. P. Lopez et al., “Cigarette smoke promotes drug resistance and expansion of cancer stem cell-like side population,” PLoS ONE, vol. 7, no. 11, Article ID e47919, 2012. View at Publisher · View at Google Scholar
  13. M. van der Deen, E. G. E. de Vries, H. Visserman et al., “Cigarette smoke extract affects functional activity of MRP1 in bronchial epithelial cells,” Journal of Biochemical and Molecular Toxicology, vol. 21, no. 5, pp. 243–251, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Ding and L. S. Kaminsky, “Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts,” Annual Review of Pharmacology and Toxicology, vol. 43, no. 1, pp. 149–173, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. N. Finnström, B. Ask, M.-L. Dahl, M. Gadd, and A. Rane, “Intra-individual variation and sex differences in gene expression of cytochromes P450 in circulating leukocytes,” Pharmacogenomics Journal, vol. 2, no. 2, pp. 111–116, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. T. Thum, V. J. Erpenbeck, J. Moeller, J. M. Hohlfeld, N. Krug, and J. Borlak, “Expression of xenobiotic metabolizing enzymes in different lung compartments of smokers and nonsmokers,” Environmental Health Perspectives, vol. 114, no. 11, pp. 1655–1661, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Sridhar, F. Schembri, J. Zeskind et al., “Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium,” BMC Genomics, vol. 9, article 259, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. X. Zhang, P. Sebastiani, G. Liu et al., “Similarities and differences between smoking-related gene expression in nasal and bronchial epithelium,” Physiological Genomics, vol. 41, no. 1, pp. 1–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. A. Spira, J. Beane, V. Shah et al., “Effects of cigarette smoke on the human airway epithelial cell transcriptome,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 27, pp. 10143–10148, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. Beane, P. Sebastiani, G. Liu, J. S. Brody, M. E. Lenburg, and A. Spira, “Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression,” Genome Biology, vol. 8, no. 9, article R201, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Steiling, J. Ryan, J. S. Brody, and A. Spira, “The field of tissue injury in the lung and airway,” Cancer Prevention Research, vol. 1, no. 6, pp. 396–403, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. J. Hoeng, M. Talikka, F. Martin, et al., “Toxicopanomics: applications of genomics, transcriptomics, proteomics and lipidomics in predictive mechanistic toxicology,” in Principle and Methods on Toxicology, A. W. Hayes, Ed., Taylor & Francis, 2013.
  23. J. Hoeng, M. Talikka, F. Martin et al., “Case study: the role of mechanistic network models in systems toxicology,” Drug Discovery Today, 2013. View at Publisher · View at Google Scholar
  24. Selventa, “Reverse Causal Reasoning Methods Whitepaper,” http://www.selventa.com/technology/white-papers.
  25. T. M. Thomson, A. Sewer, F. Martin et al., “Quantitative assessment of biological impact using transcriptomic data and mechanistic network models,” Toxicology and Applied Pharmacology, 2013. View at Publisher · View at Google Scholar
  26. W. K. Schlage, J. W. Westra, S. Gebel et al., “A computable cellular stress network model for non-diseased pulmonary and cardiovascular tissue,” BMC Systems Biology, vol. 5, article 168, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Gebel, R. B. Lichtner, B. Frushour et al., “Construction of a computable network model for DNA damage, autophagy, cell death, and senescence,” Bioinformatics and Biology Insights, vol. 7, pp. 97–117, 2013.
  28. J. W. Westra, W. K. Schlage, B. P. Frushour et al., “Construction of a computable cell proliferation network focused on non-diseased lung cells,” BMC Systems Biology, vol. 5, article 105, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Martin, T. M. Thomson, A. Sewer et al., “Assessment of network perturbation amplitude by applying high-throughput data to causal biological networks,” BMC Systems Biology, vol. 6, no. 1, article 54, 2012. View at Publisher · View at Google Scholar
  30. P. H. Karp, T. Moniger, S. P. Weber et al., “An in vitro model of differentiated human airway epithelia: methods for establishing primary cultures,” in Epithelial Cell Culture Protocols, C. Wise, Ed., vol. 188 of Methods in Molecular Medicine, chapter 11, pp. 115–137, 2002. View at Publisher · View at Google Scholar
  31. C. Mathis, C. Poussin, D. Weisensee et al., “Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 304, no. 7, pp. L489–L503, 2013. View at Publisher · View at Google Scholar
  32. H. Maunders, S. Patwardhan, J. Phillips, A. Clack, and A. Richter, “Human bronchial epithelial cell transcriptome: gene expression changes following acute exposure to whole cigarette smoke in vitro,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 292, no. 5, pp. L1248–L1256, 2007. View at Publisher · View at Google Scholar · View at Scopus
  33. A. A. Pezzulo, T. D. Starner, T. E. Scheetz et al., “The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia,” American Journal of Physiology: Lung Cellular and Molecular Physiology, vol. 300, no. 1, pp. L25–L31, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. C. J. di Como, M. J. Urist, I. Babayan et al., “p63 expression profiles in human normal and tumor tissues,” Clinical Cancer Research, vol. 8, no. 2, pp. 494–501, 2002. View at Scopus
  35. J. L. McQualter, K. Yuen, B. Williams, and I. Bertoncello, “Evidence of an epithelial stem/progenitor cell hierarchy in the adult mouse lung,” Proceedings of the National Academy of Sciences of the United States of America, vol. 107, no. 4, pp. 1414–1419, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. S. Huang, L. Wiszniewski, and S. Constant, “The use of in vitro 3D cell models in drug development for respiratory diseases,” in Drug Discovery and Development—Present and Future, I. M. Kapetanovic, Ed., chapter 8, InTech, 2011. View at Publisher · View at Google Scholar
  37. S. Parrinello, J.-P. Coppe, A. Krtolica, and J. Campisi, “Stromal-epithelial interactions in aging and cancer: senescent fibroblasts alter epithelial cell differentiation,” Journal of Cell Science, vol. 118, no. 3, pp. 485–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. Health Canada, “Determination of “tar”, nicotine, and carbon monoxide in mainstream tobacco smoke,” Official method T-115, 1999.
  39. R Development Core Team, R: A Language and Environment For Statistical Computing, 2009.
  40. R. Gentleman, Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Springer Science, Business Media, New York, NY, USA, 2005.
  41. R. C. Gentleman, V. J. Carey, D. M. Bates et al., “Bioconductor: open software development for computational biology and bioinformatics,” Genome Biology, vol. 5, no. 10, article R80, 2004. View at Scopus
  42. R. A. Irizarry, B. Hobbs, F. Collin et al., “Exploration, normalization, and summaries of high density oligonucleotide array probe level data,” Biostatistics, vol. 4, no. 2, pp. 249–264, 2003. View at Scopus
  43. F. Martin, “Systems and methods for network-based biological activity assessment,” WO Patent 2,013,034,300, 2013.
  44. Y. Strulovici-Barel, L. Omberg, M. O'Mahony et al., “Threshold of biologic responses of the small airway epithelium to low levels of tobacco smoke,” American Journal of Respiratory and Critical Care Medicine, vol. 182, no. 12, pp. 1524–1532, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. F. Schembri, S. Sridhar, C. Perdomo et al., “MicroRNAs as modulators of smoking-induced gene expression changes in human airway epithelium,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 7, pp. 2319–2324, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Stejskalova, L. Vecerova, L. M. Peréz et al., “Aryl hydrocarbon receptor and aryl hydrocarbon nuclear translocator expression in human and rat placentas and transcription activity in human trophoblast cultures,” Toxicological Sciences, vol. 123, no. 1, pp. 26–36, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. Y. Bosse, D. S. Postma, D. D. Sin et al., “Molecular signature of smoking in human lung tissues,” Cancer Research, vol. 72, no. 15, pp. 3753–3763, 2012. View at Publisher · View at Google Scholar
  48. S. Gebel, B. Gerstmayer, P. Kuhl, J. Borlak, K. Meurrens, and T. Müller, “The kinetics of transcriptomic changes induced by cigarette smoke in rat lungs reveals a specific program of defense, inflammation, and circadian clock gene expression,” Toxicological Sciences, vol. 93, no. 2, pp. 422–431, 2006. View at Publisher · View at Google Scholar · View at Scopus
  49. J. O. Boyle, Z. H. Gümüş, A. Kacker et al., “Effects of cigarette smoke on the human oral mucosal transcriptome,” Cancer Prevention Research, vol. 3, no. 3, pp. 266–278, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. S. D. Spivack, G. J. Hurteau, R. Jain et al., “Gene-environment interaction signatures by quantitative mRNA profiling in exfoliated buccal mucosal cells,” Cancer Research, vol. 64, no. 18, pp. 6805–6813, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. D. Sidransky, “The oral cavity as a molecular mirror of lung carcinogenesis,” Cancer Prevention Research, vol. 1, no. 1, pp. 12–14, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. J. Dionísio, “Diagnostic flexible bronchoscopy and accessory techniques,” Revista Portuguesa de Pneumologia, vol. 18, no. 2, pp. 99–106, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. S. Anttila, J. Hakkola, P. Tuominen et al., “Methylation of cytochrome P4501A1 promoter in the lung is associated with tobacco smoking,” Cancer Research, vol. 63, no. 24, pp. 8623–8628, 2003. View at Scopus
  54. V. Tamási, K. Monostory, R. A. Prough, and A. Falus, “Role of xenobiotic metabolism in cancer: involvement of transcriptional and miRNA regulation of P450s,” Cellular and Molecular Life Sciences, vol. 68, no. 7, pp. 1131–1146, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. D. H. Phillips, A. Hewer, C. N. Martin, R. C. Garner, and M. M. King, “Correlation of DNA adduct levels in human lung with cigarette smoking,” Nature, vol. 336, no. 6201, pp. 790–792, 1988. View at Publisher · View at Google Scholar · View at Scopus
  56. B. Schoket, D. H. Phillips, S. Kostic, and I. Vincze, “Smoking-associated bulky DNA adducts in bronchial tissue related to CYP1A1 MspI and GSTM1 genotypes in lung patients,” Carcinogenesis, vol. 19, no. 5, pp. 841–846, 1998. View at Publisher · View at Google Scholar · View at Scopus
  57. L. Anna, K. Kovács, E. Gyorffy, B. Schoket, and J. Nair, “Smoking-related O4-ethylthymidine formation in human lung tissue and comparisons with bulky DNA adducts,” Mutagenesis, vol. 26, no. 4, pp. 523–527, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. E. Gyorffy, L. Anna, Z. Gyori et al., “DNA adducts in tumour, normal peripheral lung and bronchus, and peripheral blood lymphocytes from smoking and non-smoking patients: correlations between tissues and detection by 32P-postlabelling and immunoassay,” Carcinogenesis, vol. 25, no. 7, pp. 1201–1209, 2004. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Lodovici, V. Akpan, L. Giovannini, F. Migliani, and P. Dolara, “Benzo[a]pyrene diol-epoxide DNA adducts and levels of polycyclic aromatic hydrocarbons in autoptic samples from human lungs,” Chemico-Biological Interactions, vol. 116, no. 3, pp. 199–212, 1998. View at Publisher · View at Google Scholar · View at Scopus
  60. R. W. L. Godschalk, D. E. M. Feldker, P. J. A. Borm, E. F. M. Wouters, and F.-J. van Schooten, “Body mass index modulates aromatic DNA adduct levels and their persistence in smokers,” Cancer Epidemiology Biomarkers & Prevention, vol. 11, no. 8, pp. 790–793, 2002. View at Scopus
  61. A. Besaratinia, L. M. Maas, E. M. C. Brouwer, J. C. S. Kleinjans, and F. J. van Schooten, “Comparison between smoking-related DNA adduct analysis in induced sputum and peripheral blood lymphocytes,” Carcinogenesis, vol. 21, no. 7, pp. 1335–1340, 2000. View at Scopus
  62. S. Pavanello, A. Pulliero, B. O. Saia, and E. Clonfero, “Determinants of anti-benzo[a]pyrene diol epoxide-DNA adduct formation in lymphomonocytes of the general population,” Mutation Research, vol. 611, no. 1-2, pp. 54–63, 2006. View at Publisher · View at Google Scholar · View at Scopus