About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 512495, 8 pages
http://dx.doi.org/10.1155/2013/512495
Research Article

A Biosurfactant-Sophorolipid Acts in Synergy with Antibiotics to Enhance Their Efficiency

Biochemical Sciences Division, National Chemical Laboratory, Homi Bhabha Road, Pune Maharashtra 411008, India

Received 11 April 2013; Revised 22 July 2013; Accepted 2 August 2013

Academic Editor: Ramkrishna Sen

Copyright © 2013 Kasturi Joshi-Navare and Asmita Prabhune. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Rossolini and M. Thaller, “Coping with antibiotic resistance: contributions from genomics,” Genome Medicine, vol. 2, article 15, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. S. B. Levy and B. Marshall, “Antibacterial resistance worldwide: causes, challenges and responses,” Nature Medicine, vol. 10, no. 12, pp. S122–S129, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Aiyegoro, A. Adewusi, S. Oyedemi, et al., “Interactions of antibiotics and methanolic crude extracts of Afzelia Africana (Smith.) against drug resistance bacterial isolates,” International Journal of Molecular Sciences, vol. 12, no. 7, pp. 4477–4487, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. A. J. Alanis, “Resistance to antibiotics: are we in the post-antibiotic era?” Archives of Medical Research, vol. 36, no. 6, pp. 697–705, 2005. View at Publisher · View at Google Scholar · View at Scopus
  5. A. M. Allahverdiyev, K. V. Kon, E. S. Abamor, M. Bagirova, and M. Rafailovich, “Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents,” Expert Review of Anti-Infective Therapy, vol. 9, no. 11, pp. 1035–1052, 2011. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Torella, R. Chait, and R. Kishony, “Optimal drug synergy in antimicrobial treatments,” PLOS Computational Biology, vol. 6, no. 6, Article ID e1000796, 2010. View at Publisher · View at Google Scholar
  7. G. Adwan and M. Mhanna, “Synergistic effects of plant extract and antibiotics on Staphylococcus aureus strains isolated from clinical specimens,” Middle-East Journal of Scientific Research, vol. 3, pp. 134–139, 2008.
  8. E. Gharaei-Fathabad, “Biosurfactants in pharmaceutical industry (a mini-review),” American Journal of Drug Discovery and Development, vol. 1, no. 1, pp. 58–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. P. Singh and S. S. Cameotra, “Potential applications of microbial surfactants in biomedical sciences,” Trends in Biotechnology, vol. 22, no. 3, pp. 142–146, 2004. View at Publisher · View at Google Scholar · View at Scopus
  10. K. S. Bisht, R. A. Gross, and D. L. Kaplan, “Enzyme-mediated regioselective acylations of sophorolipids,” Journal of Organic Chemistry, vol. 64, no. 3, pp. 780–789, 1999. View at Publisher · View at Google Scholar · View at Scopus
  11. I. N. A. van Bogaert, K. Saerens, C. D. Muynck, D. Develter, W. Soetaert, and E. J. Vandamme, “Microbial production and application of sophorolipids,” Applied Microbiology and Biotechnology, vol. 76, no. 1, pp. 23–34, 2007. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Azim, V. Shah, G. F. Doncel, N. Peterson, W. Gao, and R. Gross, “Amino acid conjugated sophorolipids: a new family of biologically active functionalized glycolipids,” Bioconjugate Chemistry, vol. 17, no. 6, pp. 1523–1529, 2006. View at Publisher · View at Google Scholar · View at Scopus
  13. I. N. A. van Bogaert, J. Zhang, and W. Soetaert, “Microbial synthesis of sophorolipids,” Process Biochemistry, vol. 46, no. 4, pp. 821–833, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. X. Sun, Y. Lee, J. Choi, and E. Kim, “Synergistic effect of sophorolipid and loess combination in harmful algal blooms mitigation,” Marine Pollution Bulletin, vol. 48, no. 9-10, pp. 863–872, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. Inoh, D. Kitamoto, N. Hirashima, and M. Nakanishi, “Biosurfactants of MEL-A increase gene transfection mediated by cationic liposomes,” Biochemical and Biophysical Research Communications, vol. 289, no. 1, pp. 57–61, 2001. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Loew, A. Fahr, and S. May, “Modeling the release kinetics of poorly water-soluble drug molecules from liposomal nanocarriers,” Journal of Drug Delivery, vol. 2011, Article ID 376548, 10 pages, 2011. View at Publisher · View at Google Scholar
  17. P. Dubey, K. Sevaraj, and A. Prabhune, “Sophorolipids: in self assembly and nanomaterial synthesis,” World Journal of Pharmacy and Pharmaceutical Sciences, vol. 2, no. 3, pp. 1107–1133, 2013.
  18. J. N. Sleiman, S. A. Kohlhoff, P. M. Roblin et al., “Sophorolipids as antibacterial agents,” Annals of Clinical & Laboratory Science, vol. 39, no. 1, pp. 60–63, 2009. View at Scopus
  19. K. Joshi-Navare, A. Shiras, and A. Prabhune, “Differentiation-inducing ability of sophorolipids of oleic and linoleic acids using a glioma cell line,” Biotechnology Journal, vol. 6, no. 5, pp. 509–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. K. E. Vivekanandan, K. Gokul Raj, S. Kumaresan, and M. Pandi, “Biosynthesis of silver nanoparticle activity against bacterial strain, cephalexin antibiotic synergistic activity,” International Journal of Current Science, vol. 4, pp. 1–7, 2012.
  21. I. Chopra and M. Roberts, “Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance,” Microbiology and Molecular Biology Reviews, vol. 65, no. 2, pp. 232–260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Rai, A. Prabhune, and C. C. Perry, “Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings,” Journal of Materials Chemistry, vol. 20, no. 32, pp. 6789–6798, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Gupta, S. Uma, and A. Prabhune, “Antibacterial properties of linolenic sophorolipid and its chemically esterified methyl ester form,” Research Journal of Biotechnology, vol. 7, no. 3, pp. 40–45, 2012.
  24. Y. Hu and L. Ju, “Sophorolipid production from different lipid precursors observed with LC-MS,” Enzyme and Microbial Technology, vol. 29, no. 10, pp. 593–601, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. R. Merchant and I. M. Banat, “Biosurfactants: a sustainable replacement for chemical surfactants?” Biotechnology Letters, vol. 34, no. 9, pp. 1597–1605, 2012. View at Publisher · View at Google Scholar
  26. V. Dengle-Pulate, S. Bhagwat, and A. Prabhune, “Microbial oxidation of medium chain fatty alcohol in the synthesis of sophorolipids by candida bombicola and its physicochemical characterization,” Journal of Surfactants and Detergents, vol. 18, pp. 173–181, 2013.
  27. V. Shah, D. Badia, and P. Ratsep, “Sophorolipids having enhanced antibacterial activity,” Antimicrobial Agents and Chemotherapy, vol. 51, no. 1, pp. 397–400, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Hirata, M. Ryu, K. Igarashi et al., “Natural synergism of acid and lactone type mixed sophorolipids in interfacial activities and cytotoxicities,” Journal of Oleo Science, vol. 58, no. 11, pp. 565–572, 2009. View at Scopus
  29. L. Englander and A. Friedman, “Nitric oxide nanoparticle technology,” Journal of Clinical and Aesthetic Dermatology, vol. 3, no. 6, pp. 45–50, 2010. View at Scopus
  30. J. B. Kaper, J. P. Nataro, and H. L. T. Mobley, “Pathogenic Escherichia coli,” Nature Reviews Microbiology, vol. 2, no. 2, pp. 123–140, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. M. Ceccarelli, A. V. Vargiu, and P. Ruggerone, “A kinetic Monte Carlo approach to investigate antibiotic translocation through bacterial porins,” Journal of Physics, vol. 24, no. 10, Article ID 104012, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. L. Gutmann, R. Williamson, and E. Collatz, “The possible role of porins in bacterial antibiotic resistance,” Annals of Internal Medicine, vol. 101, no. 4, pp. 554–557, 1984. View at Scopus
  33. J. Pagès, C. E. James, and M. Winterhalter, “The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria,” Nature Reviews Microbiology, vol. 6, no. 12, pp. 893–903, 2008. View at Publisher · View at Google Scholar · View at Scopus