About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 516427, 8 pages
http://dx.doi.org/10.1155/2013/516427
Research Article

Corticospinal Reorganization after Locomotor Training in a Person with Motor Incomplete Paraplegia

1Electrophysiological Analysis of Gait and Posture Laboratory, Sensory Motor Performance Program, Rehabilitation Institute of Chicago, 345 East Superior Street, Chicago, IL 60611, USA
2Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
3Department of Physical Therapy and the Graduate Center, The City University of New York, Staten Island, NY 10314, USA

Received 28 August 2012; Accepted 15 November 2012

Academic Editor: Francisco Miró

Copyright © 2013 Nupur Hajela et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Rossignol, G. Barrière, A. Frigon et al., “Plasticity of locomotor sensorimotor interactions after peripheral and/or spinal lesions,” Brain Research Reviews, vol. 57, no. 1, pp. 228–240, 2008. View at Publisher · View at Google Scholar · View at Scopus
  2. V. R. Edgerton, N. J. K. Tillakaratne, A. J. Bigbee, R. D. de Leon, and R. R. Roy, “Plasticity of the spinal neural circuitry after injury,” Annual Review of Neuroscience, vol. 27, pp. 145–167, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. I. N. Beloozerova and M. G. Sirota, “The role of the motor cortex in the control of accuracy of locomotor movements in the cat,” Journal of Physiology, vol. 461, pp. 1–25, 1993. View at Scopus
  4. I. N. Beloozerova, B. J. Farrell, M. G. Sirota, and B. I. Prilutsky, “Differences in movement mechanics, electromyographic, and motor cortex activity between accurate and nonaccurate stepping,” Journal of Neurophysiology, vol. 103, no. 4, pp. 2285–2300, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. T. Drew, J. E. Andujar, K. Lajoie, and S. Yakovenko, “Cortical mechanisms involved in visuomotor coordination during precision walking,” Brain Research Reviews, vol. 57, no. 1, pp. 199–211, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. D. M. Armstrong and T. Drew, “Discharges of pyramidal tract and other motor cortical neurones during locomotion in the cat,” Journal of Physiology, vol. 346, pp. 471–495, 1984. View at Scopus
  7. D. M. Armstrong and T. Drew, “Locomotor-related neuronal discharges in cat motor cortex compared with peripheral receptive fields and evoked movements,” Journal of Physiology, vol. 346, pp. 497–517, 1984. View at Scopus
  8. T. Drew, “Motor cortical activity during voluntary gait modifications in the cat. I. Cells related to the forelimbs,” Journal of Neurophysiology, vol. 70, no. 1, pp. 179–199, 1993. View at Scopus
  9. D. Barthélemy, M. J. Grey, J. B. Nielsen, and L. Bouyer, “Involvement of the corticospinal tract in the control of human gait,” Progress in Brain Research, vol. 192, pp. 181–197, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Nielsen, N. Petersen, and B. Fedirchuk, “Evidence suggesting a transcortical pathway from cutaneous foot afferents to tibialis anterior motoneurones in man,” Journal of Physiology, vol. 501, no. 2, pp. 473–484, 1997. View at Publisher · View at Google Scholar · View at Scopus
  11. D. Barthélemy, M. Willerslev-Olsen, H. Lundell et al., “Impaired transmission in the corticospinal tract and gait disability in spinal cord injured persons,” Journal of Neurophysiology, vol. 104, no. 2, pp. 1167–1176, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. B. H. Dobkin, “Functional rewiring of brain and spinal cord after injury: the three Rs of neural repair and neurological rehabilitation,” Current Opinion in Neurology, vol. 13, no. 6, pp. 655–659, 2000. View at Publisher · View at Google Scholar · View at Scopus
  13. J. R. Wolpaw and A. M. Tennissen, “Activity-dependent spinal cord plasticity in health and disease,” Annual Review of Neuroscience, vol. 24, pp. 807–843, 2001. View at Publisher · View at Google Scholar · View at Scopus
  14. B. Dobkin, D. Apple, H. Barbeau et al., “Weight-supported treadmill vs over-ground training for walking after acute incomplete SCI,” Neurology, vol. 66, no. 4, pp. 484–493, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Knikou, “Neural control of locomotion and training-induced plasticity after spinal and cerebral lesions,” Clinical Neurophysiology, vol. 121, no. 10, pp. 1655–1668, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. M. Knikou, “Plasticity of corticospinal neural control after locomotor training in human spinal cord injury,” Neural Plasticity, vol. 2012, Article ID 254948, 2012.
  17. P. Winchester, R. McColl, R. Querry et al., “Changes in supraspinal activation patterns following robotic locomotor therapy in motor-incomplete spinal cord injury,” Neurorehabilitation and Neural Repair, vol. 19, no. 4, pp. 313–324, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. S. L. Thomas and M. A. Gorassini, “Increases in corticospinal tract function by treadmill training after incomplete spinal cord injury,” Journal of Neurophysiology, vol. 94, no. 4, pp. 2844–2855, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. S. Sherrington, “Flexion-reflex of the limb, crossed extension-reflex and reflex stepping and standing,” The Journal of Physiology, vol. 40, pp. 28–121, 1910.
  20. M. Knikou, “Plantar cutaneous input modulates differently spinal reflexes in subjects with intact and injured spinal cord,” Spinal Cord, vol. 45, no. 1, pp. 69–77, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Knikou, “Plantar cutaneous afferents normalize the reflex modulation patterns during stepping in chronic human spinal cord injury,” Journal of Neurophysiology, vol. 103, no. 3, pp. 1304–1314, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. M. Knikou, C. A. Angeli, C. K. Ferreira, and S. J. Harkema, “Flexion reflex modulation during stepping in human spinal cord injury,” Experimental Brain Research, vol. 196, no. 3, pp. 341–351, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Knikou, N. Hajela, C. K. Mummidisetty, M. Xiao, and A. C. Smith, “Soleus H-reflex phase-dependent modulation is preserved during stepping within a robotic exoskeleton,” Clinical Neurophysiology, vol. 122, no. 7, pp. 1396–1404, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. J. N. Sanes and J. P. Donoghue, “Plasticity and primary motor cortex,” Annual Review of Neuroscience, vol. 23, pp. 393–415, 2000. View at Publisher · View at Google Scholar · View at Scopus
  25. D. E. Feldman, “Synaptic mechanisms for plasticity in neocortex,” Annual Review of Neuroscience, vol. 32, pp. 33–55, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Butz, F. Wörgötter, and A. van Ooyen, “Activity-dependent structural plasticity,” Brain Research Reviews, vol. 60, no. 2, pp. 287–305, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Valls-Solé, A. Pascual-Leone, E. M. Wassermann, and M. Hallett, “Human motor evoked responses to paired transcranial magnetic stimuli,” Electroencephalography and Clinical Neurophysiology, vol. 85, no. 6, pp. 355–364, 1992. View at Publisher · View at Google Scholar · View at Scopus
  28. V. Di Lazzaro, D. Restuccia, A. Oliviero et al., “Magnetic transcranial stimulation at intensities below active motor threshold activates intracortical inhibitory circuits,” Experimental Brain Research, vol. 119, no. 2, pp. 265–268, 1998. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Kujirai, M. D. Caramia, J. C. Rothwell et al., “Corticocortical inhibition in human motor cortex,” Journal of Physiology, vol. 471, pp. 501–519, 1993. View at Scopus
  30. J. M. A. Cowan, B. L. Day, C. Marsden, and J. C. Rothwell, “The effect of percutaneous motor cortex stimulation on H reflexes in muscles of the arm and leg in intact man,” Journal of Physiology, vol. 377, pp. 333–347, 1986. View at Scopus
  31. A. Rossi, A. Zalaffi, and B. Decchi, “Interaction of nociceptive and non-nociceptive cutaneous afferents from foot sole in common reflex pathways to tibialis anterior motoneurones in humans,” Brain Research, vol. 714, no. 1-2, pp. 76–86, 1996. View at Publisher · View at Google Scholar · View at Scopus
  32. M. Inghilleri, A. Berardelli, G. Cruccu, A. Priori, and M. Manfredi, “Corticospinal potentials after transcranial stimulation in humans,” Journal of Neurology Neurosurgery and Psychiatry, vol. 52, no. 8, pp. 970–974, 1989. View at Scopus
  33. B. Dobkin, H. Barbeau, D. Deforge et al., “The evolution of walking-related outcomes over the first 12 weeks of rehabilitation for incomplete traumatic spinal cord injury: the multicenter randomized Spinal Cord Injury Locomotor trial,” Neurorehabilitation and Neural Repair, vol. 21, no. 1, pp. 25–35, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Turiel, S. Sitia, S. Cicala et al., “Robotic treadmill training improves cardiovascular function in spinal cord injury patients,” International Journal of Cardiology, vol. 149, no. 3, pp. 323–329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. J. R. Wolpaw and J. A. O'Keefe, “Adaptive plasticity in the primate spinal stretch reflex: evidence for a two-phase process,” Journal of Neuroscience, vol. 4, no. 11, pp. 2718–2724, 1984. View at Scopus