About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 517237, 8 pages
http://dx.doi.org/10.1155/2013/517237
Review Article

Side Population Cells as Prototype of Chemoresistant, Tumor-Initiating Cells

Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India

Received 3 May 2013; Accepted 23 September 2013

Academic Editor: Jiing-Kuan Yee

Copyright © 2013 Vinitha Richard et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. A. O'Brien, A. Pollett, S. Gallinger, and J. E. Dick, “A human colon cancer cell capable of initiating tumour growth in immunodeficient mice,” Nature, vol. 445, no. 7123, pp. 106–110, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. J. E. Dick, “Stem cell concepts renew cancer research,” Blood, vol. 112, no. 13, pp. 4793–4807, 2008. View at Publisher · View at Google Scholar · View at Scopus
  3. M. F. Clarke and M. Fuller, “Stem cells and cancer: two faces of eve,” Cell, vol. 124, no. 6, pp. 1111–1115, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. Welte, J. Adjaye, H. R. Lehrach, and C. R. A. Regenbrecht, “Cancer stem cells in solid tumors: elusive or illusive?” Cell Communication and Signaling, vol. 8, pp. 6–8, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. L. L. C. Marotta and K. Polyak, “Cancer stem cells: a model in the making,” Current Opinion in Genetics and Development, vol. 19, no. 1, pp. 44–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  6. D. Hanahan and R. A. Weinberg, “Hallmarks of cancer: the next generation,” Cell, vol. 144, no. 5, pp. 646–674, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. J. E. Visvader, “Cells of origin in cancer,” Nature, vol. 469, no. 7330, pp. 314–322, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. V. Richard and M. R. Pillai, “The stem cell code in oral epithelial tumorigenesis: “The cancer stem cell shift hypothesis”,” Biochimica et Biophysica Acta, vol. 1806, no. 2, pp. 146–162, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. E. Dick, “Breast cancer stem cells revealed,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 7, pp. 3547–3549, 2003. View at Publisher · View at Google Scholar · View at Scopus
  10. C. Y. Park, D. Tseng, and I. L. Weissman, “Cancer stem cell-directed therapies: recent data from the laboratory and clinic,” Molecular Therapy, vol. 17, no. 2, pp. 219–230, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. V. Shmelkov, J. M. Butler, A. T. Hooper et al., “CD133 expression is not restricted to stem cells, and both CD133+ and CD133- metastatic colon cancer cells initiate tumors,” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2111–2120, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. C. Ginestier, M. H. Hur, E. Charafe-Jauffret et al., “ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome,” Cell Stem Cell, vol. 1, no. 5, pp. 555–567, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. S. J. Dylla, L. Beviglia, I.-K. Park et al., “Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy,” PLoS ONE, vol. 3, no. 6, Article ID e2428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Schatton, G. F. Murphy, N. Y. Frank et al., “Identification of cells initiating human melanomas,” Nature, vol. 451, no. 7176, pp. 345–349, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Dean, “ABC transporters, drug resistance, and cancer stem cells,” Journal of Mammary Gland Biology and Neoplasia, vol. 14, no. 1, pp. 3–9, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. M. A. Goodell, M. Rosenzweig, H. Kim et al., “Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species,” Nature Medicine, vol. 3, no. 12, pp. 1337–1345, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Li, X. Wu, H. Wei, and S. Tian, “Characterization of side population cells isolated from the gastric cancer cell line SGC-7901,” Oncology Letters, vol. 5, pp. 877–883, 2013.
  18. X. X. Li, Y. Dong, W. Wang, et al., “Emodin as an effective agent in targeting cancer stem-like side population cells of gallbladder carcinoma,” Stem Cells and Development, vol. 22, pp. 554–566, 2013.
  19. R. P. Hill and R. Perris, “‘Destemming’ cancer stem cells,” Journal of the National Cancer Institute, vol. 99, no. 19, pp. 1435–1440, 2007. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Golebiewska, N. H. C. Brons, R. Bjerkvig, and S. P. Niclou, “Critical appraisal of the side population assay in stem cell and cancer stem cell research,” Cell Stem Cell, vol. 8, no. 2, pp. 136–147, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. M. Gottesman, T. Fojo, and S. E. Bates, “Multidrug resistance in cancer: role of ATP-dependent transporters,” Nature Reviews Cancer, vol. 2, no. 1, pp. 48–58, 2002. View at Scopus
  22. K. Moitra, H. Lou, and M. Dean, “Multidrug efflux pumps and cancer stem cells: insights into multidrug resistance and therapeutic development,” Clinical Pharmacology and Therapeutics, vol. 89, no. 4, pp. 491–502, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. R. Katayama, S. Koike, S. Sato, Y. Sugimoto, T. Tsuruo, and N. Fujita, “Dofequidar fumarate sensitizes cancer stem-like side population cells to chemotherapeutic drugs by inhibiting ABCG2/BCRP-mediated drug export,” Cancer Science, vol. 100, no. 11, pp. 2060–2068, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Chikazawa, H. Tanaka, T. Tasaka et al., “Inhibition of Wnt signaling pathway decreases chemotherapy-resistant side-population colon cancer cells,” Anticancer Research, vol. 30, no. 6, pp. 2041–2048, 2010. View at Scopus
  25. A. Singh, H. Wu, P. Zhang, C. Happel, J. Ma, and S. Biswal, “Expression of ABCG2 (BCRP) is regulated by Nrf2 in cancer cells that confers side population and chemoresistance phenotype,” Molecular Cancer Therapeutics, vol. 9, no. 8, pp. 2365–2376, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. G. A. Challen and M. H. Little, “A side order of stem cells: the SP phenotype,” Stem Cells, vol. 24, no. 1, pp. 3–12, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. G. Pihan and S. J. Doxsey, “Mutations and aneuploidy: co-conspirators in cancer?” Cancer Cell, vol. 4, no. 2, pp. 89–94, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. M. R. Stratton, P. J. Campbell, and P. A. Futreal, “The cancer genome,” Nature, vol. 458, no. 7239, pp. 719–724, 2009. View at Publisher · View at Google Scholar · View at Scopus
  29. Y. Liang, Z. Zhong, Y. Huang et al., “Stem-like cancer cells are inducible by increasing genomic instability in cancer cells,” Journal of Biological Chemistry, vol. 285, no. 7, pp. 4931–4940, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Zeller, W. Dai, N. L. Steele et al., “Candidate DNA methylation drivers of acquired cisplatin resistance in ovarian cancer identified by methylome and expression profiling,” Oncogene, vol. 31, pp. 4567–4576, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. R. Roskoski Jr., “The ErbB/HER receptor protein-tyrosine kinases and cancer,” Biochemical and Biophysical Research Communications, vol. 319, no. 1, pp. 1–11, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. S. Chen, F. S. Pardo, J. Wang-Rodriguez et al., “EGFR regulates the side population in head and neck squamous cell carcinoma,” Laryngoscope, vol. 116, no. 3, pp. 401–406, 2006. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Imai, H. Yamagishi, Y. Ono, and Y. Ueda, “Versatile inhibitory effects of the flavonoid-derived PI3K/Akt inhibitor, LY294002, on ATP-binding cassette transporters that characterize stem cells,” Clinical and Translational Medicine, vol. 1, article 24, 2012.
  34. S. Singh, D. Chitkara, et al., “Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway,” PLoS ONE, vol. 7, Article ID e40021, 2012.
  35. D. Lu, S. Chen, X. Tan, et al., “Fra-1 promotes breast cancer chemosensitivity by driving cancer stem cells from dormancy,” Cancer Research, vol. 72, no. 14, pp. 3451–3456, 2012. View at Publisher · View at Google Scholar
  36. S. F. Tavazoie, C. Alarcón, T. Oskarsson et al., “Endogenous human microRNAs that suppress breast cancer metastasis,” Nature, vol. 451, no. 7175, pp. 147–152, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. A. Misawa, R. Katayama, S. Koike, A. Tomida, T. Watanabe, and N. Fujita, “AP-1-dependent miR-21 expression contributes to chemoresistance in cancer stem cell-like SP cells,” Oncology Research, vol. 19, no. 1, pp. 23–33, 2010. View at Publisher · View at Google Scholar · View at Scopus
  38. X. Sun, C. Fan, L. J. Hu, N. Du, C. W. Xu, and H. Ren, “Role of let-7 in maintaining characteristics of breast cancer stem cells,” Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi, vol. 28, no. 8, pp. 789–792, 2012.
  39. X. Sun, S. Qin, C. Fan, et al., “Let-7: a regulator of the ERalpha signaling pathway in human breast tumors and breast cancer stem cells,” Oncology Reports, vol. 29, pp. 2079–2087, 2013. View at Publisher · View at Google Scholar
  40. X. T. Xu, Q. Xu, J. L. Tong et al., “MicroRNA expression profiling identifies miR-328 regulates cancer stem cell-like SP cells in colorectal cancer,” British Journal of Cancer, vol. 106, no. 7, pp. 1320–1330, 2012. View at Publisher · View at Google Scholar · View at Scopus
  41. G. Zhang, L. Ma, Y. K. Xie, X. B. Miao, and C. Jin, “Esophageal cancer tumorspheres involve cancer stem-like populations with elevated aldehyde dehydrogenase enzymatic activity,” Molecular Medicine Reports, vol. 6, no. 3, pp. 519–524, 2012.
  42. R. J. Jones, J. P. Barber, M. S. Vala et al., “Assessment of aldehyde dehydrogenase in viable cells,” Blood, vol. 85, no. 10, pp. 2742–2746, 1995. View at Scopus
  43. D. W. Crabb, M. Matsumoto, D. Chang, and M. You, “Overview of the role of alcohol dehydrogenase and aldehyde dehydrogenase and their variants in the genesis of alcohol-related pathology,” Proceedings of the Nutrition Society, vol. 63, no. 1, pp. 49–63, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Hilton, “Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia,” Cancer Research, vol. 44, no. 11, pp. 5156–5160, 1984. View at Scopus
  45. C. P. Huang, M. F. Tsai, T. H. Chang, et al., “ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors,” Cancer Letters, vol. 328, no. 1, pp. 144–151, 2013.
  46. A. Schafer, J. Teufel, F. Ringel, et al., “Aldehyde dehydrogenase 1A1-a new mediator of resistance to temozolomide in glioblastoma,” Neuro-Oncology, vol. 14, no. 12, pp. 1452–1464, 2012. View at Publisher · View at Google Scholar
  47. M. Shackleton, E. Quintana, E. R. Fearon, and S. J. Morrison, “Heterogeneity in cancer: cancer stem cells versus clonal evolution,” Cell, vol. 138, no. 5, pp. 822–829, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. Riccioni, M. L. Dupuis, M. Bernabei et al., “The cancer stem cell selective inhibitor salinomycin is a p-glycoprotein inhibitor,” Blood Cells, Molecules, and Diseases, vol. 45, no. 1, pp. 86–92, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. D. Fong, A. Yeh, R. Naftalovich, T. H. Choi, and M. M. Chan, “Curcumin inhibits the side population (SP) phenotype of the rat C6 glioma cell line: towards targeting of cancer stem cells with phytochemicals,” Cancer Letters, vol. 293, no. 1, pp. 65–72, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. B. Fischer, C. Frei, U. Moura, R. Stahel, and E. Felley-Bosco, “Inhibition of phosphoinositide-3 kinase pathway down regulates ABCG2 function and sensitizes malignant pleural mesothelioma to chemotherapy,” Lung Cancer, vol. 78, no. 1, pp. 23–29, 2012. View at Publisher · View at Google Scholar
  51. Q. Niu, W. Wang, et al., “Low molecular weight heparin ablates lung cancer cisplatin-resistance by inducing proteasome-mediated ABCG2 protein degradation,” PLoS ONE, vol. 7, no. 7, Article ID e41035, 2012. View at Publisher · View at Google Scholar
  52. P. Limtrakul, W. Chearwae, S. Shukla, C. Phisalphong, and S. V. Ambudkar, “Modulation of function of three ABC drug transporters, P-glycoprotein (ABCB1), mitoxantrone resistance protein (ABCG2) and multidrug resistance protein 1 (ABCC1) by tetrahydrocurcumin, a major metabolite of curcumin,” Molecular and Cellular Biochemistry, vol. 296, no. 1-2, pp. 85–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. A. J. Alvi, H. Clayton, C. Joshi et al., “Functional and molecular characterisation of mammary side population cells,” Breast Cancer Research, vol. 5, no. 1, pp. R1–R8, 2003. View at Scopus
  54. H. Z. Li, T. B. Yi, and Z. Y. Wu, “Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells,” BMC Cancer, vol. 8, pp. 1471–2407, 2008.
  55. J.-M. Sung, H.-J. Cho, H. Yi et al., “Characterization of a stem cell population in lung cancer A549 cells,” Biochemical and Biophysical Research Communications, vol. 371, no. 1, pp. 163–167, 2008. View at Publisher · View at Google Scholar · View at Scopus
  56. A. M. Friel, P. A. Sergent, C. Patnaude et al., “Functional analyses of the cancer stem cell-like properties of human endometrial tumor initiating cells,” Cell Cycle, vol. 7, no. 2, pp. 242–249, 2008. View at Scopus
  57. K. Kato, T. Takao, A. Kuboyama et al., “Endometrial cancer side-population cells show prominent migration and have a potential to differentiate into the mesenchymal cell lineage,” American Journal of Pathology, vol. 176, no. 1, pp. 381–392, 2010. View at Publisher · View at Google Scholar · View at Scopus
  58. M. Yang, R. Zhang, M. Yan, Z. Ye, W. Liang, and Z. Luo, “Detection and characterization of side population in Ewing's sarcoma SK-ES-1 cells in vitro,” Biochemical and Biophysical Research Communications, vol. 391, no. 1, pp. 1062–1066, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Fukaya, S. Ohta, M. Yamaguchi et al., “Isolation of cancer stem-like cells from a side population of a human glioblastoma cell line, SK-MG-1,” Cancer Letters, vol. 291, no. 2, pp. 150–157, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. A. Santamaria-Martínez, J. Barquinero, A. Barbosa-Desongles et al., “Identification of multipotent mesenchymal stromal cells in the reactive stroma of a prostate cancer xenograft by side population analysis,” Experimental Cell Research, vol. 315, no. 17, pp. 3004–3013, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. H. Wang, F. Li, B. Luo et al., “A side population of cells from a human pancreatic carcinoma cell line harbors cancer stem cell characteristics,” Neoplasma, vol. 56, no. 5, pp. 371–378, 2009. View at Publisher · View at Google Scholar · View at Scopus
  62. B. Moshaver, A. van Rhenen, A. Kelder et al., “Identification of a small subpopulation of candidate leukemia-initiating cells in the side population of patients with acute myeloid leukemia,” Stem Cells, vol. 26, no. 12, pp. 3059–3067, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. G.-M. Shi, Y. Xu, J. Fan et al., “Identification of side population cells in human hepatocellular carcinoma cell lines with stepwise metastatic potentials,” Journal of Cancer Research and Clinical Oncology, vol. 134, no. 11, pp. 1155–1163, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. V. K. Srivastava and J. Nalbantoglu, “Flow cytometric characterization of the DAOY medulloblastoma cell line for the cancer stem-like phenotype,” Cytometry A, vol. 73, no. 10, pp. 940–948, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. S. K. Addla, M. D. Brown, C. A. Hart, V. A. C. Ramani, and N. W. Clarke, “Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells,” American Journal of Physiology, vol. 295, no. 3, pp. F680–F687, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. J. E. Oates, B. R. Grey, S. K. Addla et al., “Hoechst 33342 side population identification is a conserved and unified mechanism in urological cancers,” Stem Cells and Development, vol. 18, no. 10, pp. 1515–1521, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. Q. Gao, L. Geng, G. Kvalheim, G. Gaudernack, and Z. Suo, “Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3,” Ultrastructural Pathology, vol. 33, no. 4, pp. 175–181, 2009. View at Publisher · View at Google Scholar · View at Scopus
  68. J. Wang, L.-P. Guo, L.-Z. Chen, Y.-X. Zeng, and H. L. Shih, “Identification of cancer stem cell-like side population cells in human nasopharyngeal carcinoma cell line,” Cancer Research, vol. 67, no. 8, pp. 3716–3724, 2007. View at Publisher · View at Google Scholar · View at Scopus
  69. J. Dou, P. Wen, W. Hu et al., “Identifying tumor stem-like cells in mouse melanoma cell lines by analyzing the characteristics of side population cells,” Cell Biology International, vol. 33, no. 8, pp. 807–815, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. G. Wan, L. Zhou, M. Xie, H. Chen, and J. Tian, “Characterization of side population cells from laryngeal cancer cell lines,” Head and Neck, vol. 32, no. 10, pp. 1302–1309, 2010. View at Publisher · View at Google Scholar · View at Scopus
  71. M. Yashiro, K. Yasuda, T. Nishii et al., “Epigenetic regulation of the embryonic oncogene ERas in gastric cancer cells,” International Journal of Oncology, vol. 35, no. 5, pp. 997–1003, 2009. View at Publisher · View at Google Scholar · View at Scopus
  72. K. Fukuda, Y. Saikawa, M. Ohashi et al., “Tumor initiating potential of side population cells in human gastric cancer,” International Journal of Oncology, vol. 34, no. 5, pp. 1201–1207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  73. Y. Luo, L. Z. Ellis, K. Dallaglio, et al., “Side population cells from human melanoma tumors reveal diverse mechanisms for chemoresistance,” Journal of Investigative Dermatology, vol. 132, no. 10, pp. 2440–2450, 2012.
  74. M. R. Loebinger, A. Giangreco, K. R. Groot et al., “Squamous cell cancers contain a side population of stem-like cells that are made chemosensitive by ABC transporter blockade,” British Journal of Cancer, vol. 98, no. 2, pp. 380–387, 2008. View at Publisher · View at Google Scholar · View at Scopus
  75. S. Yanamoto, G. Kawasaki, S.-I. Yamada et al., “Isolation and characterization of cancer stem-like side population cells in human oral cancer cells,” Oral Oncology, vol. 47, no. 9, pp. 855–860, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Gross, F.-E. Lfaqihi-Olive, L. Ysebaert et al., “B-chronic lymphocytic leukemia chemoresistance involves innate and acquired leukemic side population cells,” Leukemia, vol. 24, no. 11, pp. 1885–1892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  77. S.-N. Zhang, F.-T. Huang, Y.-J. Huang, W. Zhong, and Z. Yu, “Characterization of a cancer stem cell-like side population derived from human pancreatic adenocarcinoma cells,” Tumori, vol. 96, no. 6, pp. 985–992, 2010. View at Scopus
  78. J. Zhou, C.-Y. Wang, T. Liu et al., “Persistence of side population cells with high drug efflux capacity in pancreatic cancer,” World Journal of Gastroenterology, vol. 14, no. 6, pp. 925–930, 2008. View at Publisher · View at Google Scholar · View at Scopus
  79. A.-M. Bleau, D. Hambardzumyan, T. Ozawa et al., “PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells,” Cell Stem Cell, vol. 4, no. 3, pp. 226–235, 2009. View at Publisher · View at Google Scholar · View at Scopus
  80. J. Zhou, J. Wulfkuhle, H. Zhang et al., “Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 16158–16163, 2007. View at Publisher · View at Google Scholar · View at Scopus
  81. D. Huang, Q. Gao, L. Guo et al., “Isolation and identification of cancer stem-like cells in esophageal carcinoma cell lines,” Stem Cells and Development, vol. 18, no. 3, pp. 465–473, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. Z.-F. Ning, Y.-J. Huang, T.-X. Lin et al., “Subpopulations of stem-like cells in side population cells from the human bladder transitional cell cancer cell line T24,” Journal of International Medical Research, vol. 37, no. 3, pp. 621–630, 2009. View at Scopus