About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 517570, 15 pages
http://dx.doi.org/10.1155/2013/517570
Clinical Study

Novel GUCA1A Mutations Suggesting Possible Mechanisms of Pathogenesis in Cone, Cone-Rod, and Macular Dystrophy Patients

1Department of Cellular Therapy and Regenerative Medicine, Andalusian Centre for Molecular Biology and Regenerative Medicine (CABIMER), ‘Isla Cartuja’, 41092 Seville, Spain
2Department of Genetics, IIS-Jiménez Díaz Foundation, 28040 Madrid, Spain
3Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, 46010 Valencia, Spain
4Department of Ophthalmology, Hospital ‘Fundación Jiménez Díaz’, 28040 Madrid, Spain
5Department of Genetics, UCL-Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK

Received 18 April 2013; Accepted 19 June 2013

Academic Editor: Claudia Gragnoli

Copyright © 2013 Kunka Kamenarova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. P. Hamel, “Cone rod dystrophies,” Orphanet Journal of Rare Diseases, vol. 2, no. 1, article 7, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Michaelides, A. J. Hardcastle, D. M. Hunt, and A. T. Moore, “Progressive cone and cone-rod dystrophies: phenotypes and underlying molecular genetic basis,” Survey of Ophthalmology, vol. 51, no. 3, pp. 232–258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. S. M. Downes, A. M. Payne, R. E. Kelsell et al., “Autosomal dominant cone-rod dystrophy with mutations in the guanylate cyclase 2D gene encoding retinal guanylate cyclase-1,” Archives of Ophthalmology, vol. 119, no. 11, pp. 1667–1673, 2001. View at Scopus
  4. V. B. D. Kitiratschky, P. Behnen, U. Kellner et al., “Mutations in the GUCA1A gene involved in hereditary cone dystrophies impair calcium-mediated regulation of guanylate cyclase,” Human Mutation, vol. 30, no. 8, pp. E782–E796, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Michaelides, S. E. Wilkie, S. Jenkins et al., “Mutation in the gene GUCA1A, encoding guanylate cyclase-activating protein 1, causes cone, cone-rod, and macular dystrophy,” Ophthalmology, vol. 112, no. 8, pp. 1442–1447, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. A. M. Payne, S. M. Downes, D. A. R. Bessant et al., “A mutation in guanylate cyclase activator 1A(GUCA1A) in an autosomal dominant cone dystrophy pedigree mapping to a new locus on chromosome 6p21.1,” Human Molecular Genetics, vol. 7, no. 2, pp. 273–277, 1998. View at Publisher · View at Google Scholar · View at Scopus
  7. L. Jiang, D. Wheaton, G. Bereta et al., “A novel GCAP1(N104K) mutation in EF-hand 3 (EF3) linked to autosomal dominant cone dystrophy,” Vision Research, vol. 48, no. 23-24, pp. 2425–2432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. M. Nishiguchi, I. Sokal, L. Yang et al., “A novel mutation (I143NT) in guanylate cyclase-activating protein 1 (GCAP1) associated with autosomal dominant cone degeneration,” Investigative Ophthalmology and Visual Science, vol. 45, no. 11, pp. 3863–3870, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. L. Jiang, B. J. Katz, Z. Yang et al., “Autosomal dominant cone dystrophy caused by a novel mutation in the GCAP1 gene (GUCA1A),” Molecular Vision, vol. 11, pp. 143–151, 2005. View at Scopus
  10. I. Sokal, W. J. Dupps, M. A. Grassi et al., “A novel GCAP1 missense mutation (L151F) in a large family with autosomal dominant cone-rod dystrophy (adCORD),” Investigative Ophthalmology and Visual Science, vol. 46, no. 4, pp. 1124–1132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. S. E. Wilkie, Y. Li, E. C. Deery et al., “Identification and functional consequences of a new mutation (E155G) in the gene for GCAP1 that causes autosomal dominant cone dystrophy,” American Journal of Human Genetics, vol. 69, no. 3, pp. 471–480, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Cuenca, S. Lopez, K. Howes, and H. Kolb, “The localization of guanylyl cylase-activating proteins in the mammalian retina,” Investigative Ophthalmology and Visual Science, vol. 39, no. 7, pp. 1243–1250, 1998. View at Scopus
  13. J. J. Falke, S. K. Drake, A. L. Hazard, and O. B. Peersen, “Molecular tuning of ion binding to calcium signaling proteins,” Quarterly Reviews of Biophysics, vol. 27, no. 3, pp. 219–290, 1994. View at Scopus
  14. K. Palczewski, I. Sokal, and W. Baehr, “Guanylate cyclase-activating proteins: structure, function, and diversity,” Biochemical and Biophysical Research Communications, vol. 322, no. 4, pp. 1123–1130, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. L. Cartegni, S. L. Chew, and A. R. Krainer, “Listening to silence and understanding nonsense: exonic mutations that affect splicing,” Nature Reviews Genetics, vol. 3, no. 4, pp. 285–298, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. I. C. Eperon, O. V. Makarova, A. Mayeda et al., “Selection of alternative 5' splice sites: role of U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1,” Molecular and Cellular Biology, vol. 20, no. 22, pp. 8303–8318, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. M. Krawczak, N. S. T. Thomas, B. Hundrieser et al., “Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing,” Human Mutation, vol. 28, no. 2, pp. 150–158, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Pagani and F. E. Baralle, “Genomic variants in exons and introns: identifying the splicing spoilers,” Nature Reviews Genetics, vol. 5, no. 5, pp. 389–396, 2004. View at Publisher · View at Google Scholar · View at Scopus
  19. S. M. Downes, G. E. Holder, F. W. Fitzke et al., “Autosomal dominant cone and cone-rod dystrophy with mutations in the guanylate cyclase activator 1A gene-encoding guanylate cyclase activating protein-1,” Archives of Ophthalmology, vol. 119, no. 1, pp. 96–105, 2001. View at Scopus
  20. S. A. Miller, D. D. Dykes, and H. F. Polesky, “A simple salting out procedure for extracting DNA from human nucleated cells,” Nucleic Acids Research, vol. 16, no. 3, p. 1215, 1988. View at Publisher · View at Google Scholar · View at Scopus
  21. K. Hoffmann and T. H. Lindner, “easyLINKAGE-Plus—automated linkage analyses using large-scale SNP data,” Bioinformatics, vol. 21, no. 17, pp. 3565–3567, 2005. View at Publisher · View at Google Scholar · View at Scopus
  22. G. R. Abecasis, S. S. Cherny, W. O. Cookson, and L. R. Cardon, “Merlin—rapid analysis of dense genetic maps using sparse gene flow trees,” Nature Genetics, vol. 30, no. 1, pp. 97–101, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. I. A. Adzhubei, S. Schmidt, L. Peshkin et al., “A method and server for predicting damaging missense mutations,” Nature Methods, vol. 7, no. 4, pp. 248–249, 2010. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Faraggi, T. Zhang, Y. Yang, L. Kurgan, and Y. Zhou, “SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles,” Journal of Computational Chemistry, vol. 33, no. 3, pp. 259–267, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. L. J. McGuffin, K. Bryson, and D. T. Jones, “The PSIPRED protein structure prediction server,” Bioinformatics, vol. 16, no. 4, pp. 404–405, 2000. View at Scopus
  26. F. Desmet, D. Hamroun, M. Lalande, G. Collod-Bëroud, M. Claustres, and C. Béroud, “Human Splicing Finder: an online bioinformatics tool to predict splicing signals,” Nucleic Acids Research, vol. 37, no. 9, article e67, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Cartegni, J. Wang, Z. Zhu, M. Q. Zhang, and A. R. Krainer, “ESEfinder: a web resource to identify exonic splicing enhancers,” Nucleic Acids Research, vol. 31, no. 13, pp. 3568–3571, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Stamm, J. Riethoven, V. Le Texier et al., “ASD: a bioinformatics resource on alternative splicing.,” Nucleic Acids Research, vol. 34, pp. D46–D55, 2006. View at Scopus
  29. A. Goren, O. Ram, M. Amit et al., “Comparative analysis identifies exonic splicing regulatory sequences-the complex definition of enhancers and silencers,” Molecular Cell, vol. 22, no. 6, pp. 769–781, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. W. G. Fairbrother, G. W. Yeo, R. Yeh et al., “RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons,” Nucleic Acids Research, vol. 32, pp. W187–W190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. Z. Wang, M. E. Rolish, G. Yeo, V. Tung, M. Mawson, and C. B. Burge, “Systematic identification and analysis of exonic splicing silencers,” Cell, vol. 119, no. 6, pp. 831–845, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. X. H.-F. Zhang, T. Kangsamaksin, M. S. P. Chao, J. K. Banerjee, and L. A. Chasin, “Exon inclusion is dependent on predictable exonic splicing enhancers,” Molecular and Cellular Biology, vol. 25, no. 16, pp. 7323–7332, 2005. View at Publisher · View at Google Scholar · View at Scopus
  33. W. Humphrey, A. Dalke, and K. Schulten, “VMD: visual molecular dynamics,” Journal of Molecular Graphics, vol. 14, no. 1, pp. 33–38, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. J. J. C. Van Lith-Verhoeven, C. B. Hoyng, B. Van Den Helm et al., “The benign concentric annular macular dystrophy locus maps to 6p12.3-q16,” Investigative Ophthalmology and Visual Science, vol. 45, no. 1, pp. 30–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  35. K. Zhang, M. Kniazeva, M. Han et al., “A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy,” Nature Genetics, vol. 27, no. 1, pp. 89–93, 2001. View at Publisher · View at Google Scholar · View at Scopus
  36. M. Nakazawa, E. Kikawa, Y. Chida, and M. Tamai, “Asn244His mutation of the peripherin/RDS gene causing autosomal dominant cone-rod degeneration,” Human Molecular Genetics, vol. 3, no. 7, pp. 1195–1196, 1994. View at Scopus
  37. S. Johnson, S. Halford, A. G. Morris et al., “Genomic organisation and alternative splicing of human RIM1, a gene implicated in autosomal dominant cone-rod dystrophy (CORD7),” Genomics, vol. 81, no. 3, pp. 304–314, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. A. M. Dizhoor, S. G. Boikov, and E. V. Olshevskaya, “Constitutive activation of photoreceptor guanylate cyclase by Y99C mutant of GCAP-1. Possible role in causing human autosomal dominant cone degeneration,” The Journal of Biological Chemistry, vol. 273, no. 28, pp. 17311–17314, 1998. View at Publisher · View at Google Scholar · View at Scopus
  39. E. V. Olshevskaya, P. D. Calvert, M. L. Woodruff et al., “The Y99C mutation in guanylyl cyclase-activating protein 1 increases intracellular Ca2+ and causes photoreceptor degeneration in transgenic mice,” Journal of Neuroscience, vol. 24, no. 27, pp. 6078–6085, 2004. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Zhu, A. Mayeda, and A. R. Krainer, “Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins,” Molecular Cell, vol. 8, no. 6, pp. 1351–1361, 2001. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Yu, P. A. Maroney, J. A. Denker et al., “Dynamic regulation of alternative splicing by silencers that modulate 5' splice site competition,” Cell, vol. 135, no. 7, pp. 1224–1236, 2008. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Sterne-Weiler, J. Howard, M. Mort, D. N. Cooper, and J. R. Sanford, “Loss of exon identity is a common mechanism of human inherited disease,” Genome Research, vol. 21, no. 10, pp. 1563–1571, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. J. R. Sanford, X. Wang, M. Mort et al., “Splicing factor SFRS1 recognizes a functionally diverse landscape of RNA transcripts,” Genome Research, vol. 19, no. 3, pp. 381–394, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. C. L. Lorson, E. Hahnen, E. J. Androphy, and B. Wirth, “A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 11, pp. 6307–6311, 1999. View at Publisher · View at Google Scholar · View at Scopus
  45. S. McVety, L. Li, P. H. Gordon, G. Chong, and W. D. Foulkes, “Disruption of an exon splicing enhancer in exon 3 of MLH1 is the cause of HNPCC in a Quebec family,” Journal of Medical Genetics, vol. 43, no. 2, pp. 153–156, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. K. B. Nielsen, S. Sørensen, L. Cartegni et al., “Seemingly neutral polymorphic variants may confer immunity to splicing-inactivating mutations: a synonymous SNP in exon 5 of MCAD protects from deleterious mutations in a flanking exonic splicing enhancer,” American Journal of Human Genetics, vol. 80, no. 3, pp. 416–432, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. F. Pagani, C. Stuani, M. Tzetis et al., “New type of disease causing mutations: the example of the composite exonic regulatory elements of splicing in CFTR exon 12,” Human Molecular Genetics, vol. 12, no. 10, pp. 1111–1120, 2003. View at Publisher · View at Google Scholar · View at Scopus
  48. T. Koed Doktor, L. D. Schroeder, A. Vested et al., “SMN2 exon 7 splicing is inhibited by binding of hnRNP A1 to a common ESS motif that spans the 3' splice site,” Human Mutation, vol. 32, no. 2, pp. 220–230, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Buratti, M. Baralle, and F. E. Baralle, “Defective splicing, disease and therapy: searching for master checkpoints in exon definition.,” Nucleic Acids Research, vol. 34, no. 12, pp. 3494–3510, 2006. View at Scopus
  50. R. L. Davis, V. M. Homer, P. M. George, and S. O. Brennan, “A deep intronic mutation in FGB creates a consensus exonic splicing enhancer motif that results in afibrinogenemia caused by aberrant mRNA splicing, which can be corrected in vitro with antisense oligonucleotide treatment,” Human Mutation, vol. 30, no. 2, pp. 221–227, 2009. View at Publisher · View at Google Scholar · View at Scopus
  51. K. Homolova, P. Zavadakova, T. K. Doktor, L. D. Schroeder, V. Kozich, and B. S. Andresen, “The deep intronic c.903+469T > C mutation in the MTRR gene creates an SF2/ASF binding exonic splicing enhancer, which leads to pseudoexon activation and causes the cblE type of homocystinuria,” Human Mutation, vol. 31, no. 4, pp. 437–444, 2010. View at Publisher · View at Google Scholar · View at Scopus