About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 519126, 9 pages
http://dx.doi.org/10.1155/2013/519126
Clinical Study

The Effect of Conditioned Media of Adipose-Derived Stem Cells on Wound Healing after Ablative Fractional Carbon Dioxide Laser Resurfacing

1Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
2Nanjing Regenerative Medicine Engineering and Technology Research Center, Nanjing 210029, China

Received 15 June 2013; Revised 19 October 2013; Accepted 23 October 2013

Academic Editor: Maxim E. Darvin

Copyright © 2013 Bing-Rong Zhou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, “Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury,” Lasers in Surgery and Medicine, vol. 34, no. 5, pp. 426–438, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. B. H. Oh, Y. J. Hwang, Y. W. Lee, Y. B. Choe, and K. J. Ahn, “Skin characteristics after fractional photothermolysis,” Annals of Dermatology, vol. 23, no. 4, pp. 448–454, 2011. View at Scopus
  3. A. I. Metelitsa and T. S. Alster, “Fractionated laser skin resurfacing treatment complications: a review,” Dermatologic Surgery, vol. 36, no. 3, pp. 299–306, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. E. P. Tierney and C. W. Hanke, “Treatment of CO2 laser induced hypopigmentation with ablative fractionated laser resurfacing: case report and review of the literature,” Journal of Drugs in Dermatology, vol. 9, no. 11, pp. 1420–1426, 2010. View at Scopus
  5. D. Š. Buzina, J. Lipozenčić, Z. B. Mokos, R. Čeović, and K. Kostović, “Ablative laser resurfacing: is it still the gold standard for facial rejuvenation?” Acta Dermatovenerologica Croatica, vol. 18, no. 3, pp. 190–194, 2010. View at Scopus
  6. N. Saedi, H. R. Jalian, A. Petelin, and C. Zachary, “Fractionation: past, present, future,” Seminars in Cutaneous Medicine and Surgery, vol. 31, no. 2, pp. 105–109, 2012.
  7. C. M. Hunzeker, E. T. Weiss, and R. G. Geronemus, “Fractionated CO2 laser resurfacing: our experience with more than 2000 treatments,” Aesthetic Surgery Journal, vol. 29, no. 4, pp. 317–322, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. W.-S. Kim, B.-S. Park, J.-H. Sung et al., “Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts,” Journal of Dermatological Science, vol. 48, no. 1, pp. 15–24, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. B.-S. Park, W.-S. Kim, J.-S. Choi et al., “Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion,” Biomedical Research, vol. 31, no. 1, pp. 27–34, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. W.-S. Kim, B.-S. Park, H.-K. Kim et al., “Evidence supporting antioxidant action of adipose-derived stem cells: protection of human dermal fibroblasts from oxidative stress,” Journal of Dermatological Science, vol. 49, no. 2, pp. 133–142, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. M. Altman, Y. Yan, N. Matthias et al., “IFATS collection: human adipose-derived stem cells seeded on a silk fibroin-chitosan scaffold enhance wound repair in a murine soft tissue injury model,” Stem Cells, vol. 27, no. 1, pp. 250–258, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Nambu, S. Kishimoto, S. Nakamura et al., “Accelerated wound healing in healing-impaired db/db mice by autologous adipose tissue-derived stromal cells combined with atelocollagen matrix,” Annals of Plastic Surgery, vol. 62, no. 3, pp. 317–321, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. J. S. Lim and G. Yoo, “Effects of adipose-derived stromal cells and of their extract on wound healing in a mouse model,” Journal of Korean Medical Science, vol. 25, no. 5, pp. 746–751, 2010. View at Publisher · View at Google Scholar · View at Scopus
  14. S. S. Collawn, N. Sanjib Banerjee, J. de la Torre, L. Vasconez, and L. T. Chow, “Adipose-derived stromal cells accelerate wound healing in an organotypic raft culture model,” Annals of Plastic Surgery, vol. 68, no. 5, pp. 501–504, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. W.-S. Kim, B.-S. Park, and J.-H. Sung, “The wound-healing and antioxidant effects of adipose-derived stem cells,” Expert Opinion on Biological Therapy, vol. 9, no. 7, pp. 879–887, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. S.-H. Song, M.-O. Lee, J.-S. Lee et al., “Genetic modification of human adipose-derived stem cells for promoting wound healing,” Journal of Dermatological Science, vol. 66, no. 2, pp. 98–107, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. B.-S. Park, K. A. Jang, J.-H. Sung et al., “Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging,” Dermatologic Surgery, vol. 34, no. 10, pp. 1323–1326, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Y. Lee, Y. Xia, W.-S. Kim et al., “Hypoxia-enhanced wound-healing function of adipose-derived stem cells: increase in stem cell proliferation and up-regulation of VEGF and bFGF,” Wound Repair and Regeneration, vol. 17, no. 4, pp. 540–547, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. N. Akhtar, S. U. Zaman, B. A. Khan, M. N. Amir, and M. A. Ebrahimzadeh, “Calendula extract: effects on mechanical parameters of human skin,” Acta Poloniae Pharmaceutica, vol. 68, no. 5, pp. 693–701, 2011. View at Scopus
  20. J. Huang, S. Wang, C. Wei et al., “In vivo differentiation of adipose-derived stem cells in an injectable poloxamer-octapeptide hybrid hydrogel,” Tissue and Cell, vol. 43, no. 6, pp. 344–349, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Konno, A. Hamabe, S. Hasegawa et al., “Adipose-derived mesenchymal stem cells and regenerative medicine,” Development, Growth & Differentiation, vol. 55, no. 3, pp. 309–318, 2013.
  22. P. Gir, G. Oni, S. A. Brown, A. Mojallal, and R. J. Rohrich, “Human adipose stem cells: current clinical applications,” Plastic and Reconstructive Surgery, vol. 129, no. 6, pp. 1277–1290, 2012.
  23. J. P. Steinberg, S. J. Hong, M. R. Geringer, R. D. Galiano, and T. A. Mustoe, “Equivalent effects of topically-delivered adipose-derived stem cells and dermal fibroblasts in the ischemic rabbit ear model for chronic wounds,” Aesthetic Surgery Journal, vol. 32, no. 4, pp. 504–519, 2012.
  24. W.-S. Kim, B.-S. Park, and J.-H. Sung, “Protective role of adipose-derived stem cells and their soluble factors in photoaging,” Archives of Dermatological Research, vol. 301, no. 5, pp. 329–336, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. W.-S. Kim, B.-S. Park, S.-H. Park, H.-K. Kim, and J.-H. Sung, “Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors,” Journal of Dermatological Science, vol. 53, no. 2, pp. 96–102, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. S. Liu, H. Zhang, X. Zhang et al., “Synergistic angiogenesis promoting effects of extracellular matrix scaffolds and adipose-derived stem cells during wound repair,” Tissue Engineering A, vol. 17, no. 5-6, pp. 725–739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Yang, W. Wang, L. Li et al., “The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair,” PLoS One, vol. 8, no. 3, Article ID e59020, 2013.
  28. W.-S. Kim, S.-H. Park, S.-J. Ahn et al., “Whitening effect of adipose-derived stem cells: a critical role of TGF-β1,” Biological and Pharmaceutical Bulletin, vol. 31, no. 4, pp. 606–610, 2008. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Chang, J. H. Park, K. H. Min, R. S. Lee, and E. K. Kim, “Whitening effects of adipose-derived stem cells: a preliminary in vivo study,” Aesthetic Plastic Surgery. In press.
  30. K. M. Moon, Y.-H. Park, J. S. Lee et al., “The effect of secretory factors of adipose-derived stem cells on human keratinocytes,” International Journal of Molecular Sciences, vol. 13, no. 1, pp. 1239–1257, 2012. View at Publisher · View at Google Scholar · View at Scopus
  31. J.-H. Kim, M. Jung, H.-S. Kim, Y.-M. Kim, and E.-H. Choi, “Adipose-derived stem cells as a new therapeutic modality for ageing skin,” Experimental Dermatology, vol. 20, no. 5, pp. 383–387, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Oni, C. Lequeux, M. J. Cho et al., “Transdermal delivery of adipocyte-derived stem cells using a fractional ablative laser,” Aesthetic Surgery Journal, vol. 33, no. 1, pp. 109–116, 2013.
  33. H. C. Jin, Y. S. Jin, R. C. Hai et al., “Modulation of skin collagen metabolism in aged and photoaged human skin in vivo,” Journal of Investigative Dermatology, vol. 117, no. 5, pp. 1218–1224, 2001. View at Publisher · View at Google Scholar · View at Scopus