About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 519184, 7 pages
http://dx.doi.org/10.1155/2013/519184
Research Article

Direct Evaluation of L-DOPA Actions on Neuronal Activity of Parkinsonian Tissue In Vitro

División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), 04510 México City, DF, Mexico

Received 17 June 2013; Accepted 18 August 2013

Academic Editor: Olivier Darbin

Copyright © 2013 Víctor Plata et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Herrera-Marschitz, G. Arbuthnott, and U. Ungerstedt, “The rotational model and microdialysis: significance for dopamine signalling, clinical studies, and beyond,” Progress in Neurobiology, vol. 90, no. 2, pp. 176–189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. N. B. Mercuri and G. Bernardi, “The ‘magic’ of L-dopa: why is it the gold standard Parkinson's disease therapy?” Trends in Pharmacological Sciences, vol. 26, no. 7, pp. 341–344, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. O. Jáidar, L. Carrillo-Reid, A. Hernández, R. Drucker-Colín, J. Bargas, and A. Hernández-Cruz, “Dynamics of the Parkinsonian striatal microcircuit: entrainment into a dominant network state,” Journal of Neuroscience, vol. 30, no. 34, pp. 11326–11336, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. C. Oye, R. Bouchard, R. Boucher, and L. J. Poirier, “Spontaneous activity of the putamen after chronic interruption of the dopaminergic pathway: effect of L-dopa,” Journal of Pharmacology and Experimental Therapeutics, vol. 175, no. 3, pp. 700–708, 1970. View at Scopus
  5. E. Galarraga, J. Bargas, D. Martinez-Fong, and J. Aceves, “Spontaneous synaptic potentials in dopamine-denervated neostriatal neurons,” Neuroscience Letters, vol. 81, no. 3, pp. 351–355, 1987. View at Scopus
  6. P. Calabresi, N. B. Mercuri, G. Sancesario, and G. Bernardi, “Electrophysiology of dopamine-denervated striatal neurons. Implications for Parkinson's disease,” Brain, vol. 116, no. 2, pp. 433–452, 1993. View at Scopus
  7. K.-C. Tang, M. J. Low, D. K. Grandy, and D. M. Lovinger, “Dopamine-dependent synaptic plasticity in striatum during in vivo development,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 3, pp. 1255–1260, 2001. View at Publisher · View at Google Scholar · View at Scopus
  8. M.-T. Chen, M. Morales, D. J. Woodward, B. J. Hoffer, and P. H. Janak, “In vivo extracellular recording of striatal neurons in the awake rat following unilateral 6-hydroxydopamine lesions,” Experimental Neurology, vol. 171, no. 1, pp. 72–83, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. K. Y. Tseng, F. Kasanetz, L. Kargieman, L. A. Riquelme, and M. G. Murer, “Cortical slow oscillatory activity is reflected in the membrane potential and spike trains of striatal neurons in rats with chronic nigrostriatal lesions,” Journal of Neuroscience, vol. 21, no. 16, pp. 6430–6439, 2001. View at Scopus
  10. L. Liang, M. R. DeLong, and S. M. Papa, “Inversion of dopamine responses in striatal medium spiny neurons and involuntary movements,” Journal of Neuroscience, vol. 28, no. 30, pp. 7537–7547, 2008. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Raz, A. Feingold, V. Zelanskaya, E. Vaadia, and H. Bergman, “Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates,” Journal of Neurophysiology, vol. 76, no. 3, pp. 2083–2088, 1996. View at Scopus
  12. J. R. Walters and D. A. Bergstrom, “Basal ganglia network synchronization in animal models of Parkinson's disease,” in Cortico-Subcortical Dynamics in Parkinson Disease, pp. 117–142, Contemporary Neuroscience, 2009.
  13. N. Lemaire, L. F. Hernandez, D. Hu, Y. Kubota, M. W. Howe, and A. M. Graybiel, “Effects of dopamine depletion on LFP oscillations in striatum are task- and learning-dependent and selectively reversed by L-DOPA,” PNAS, vol. 109, no. 44, pp. 18126–18131, 2012.
  14. B. Ballion, F. Frenois, C. L. Zold, J. Chetrit, M. G. Murer, and F. Gonon, “D2 receptor stimulation, but not D1, restores striatal equilibrium in a rat model of Parkinsonism,” Neurobiology of Disease, vol. 35, no. 3, pp. 376–384, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Taverna, E. Ilijic, and D. J. Surmeier, “Recurrent collateral connections of striatal medium spiny neurons are disrupted in models of Parkinson's disease,” Journal of Neuroscience, vol. 28, no. 21, pp. 5504–5512, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. V. G. López-Huerta, L. Carrillo-Reid, E. Galarraga et al., “The balance of striatal feedback transmission is disrupted in a model of parkinsonism,” Journal of Neuroscience, vol. 33, no. 11, pp. 4964–4975, 2013.
  17. T. Perez-Rosello, A. Figueroa, H. Salgado et al., “Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels,” Journal of Neurophysiology, vol. 93, no. 5, pp. 2507–2519, 2005. View at Publisher · View at Google Scholar · View at Scopus
  18. X.-T. Hu and R. Y. Wang, “Comparison of effects of D-1 and D-2 dopamine receptor agonists on neurons in the rat caudate putamen: an electrophysiological study,” Journal of Neuroscience, vol. 8, no. 11, pp. 4340–4348, 1988. View at Scopus
  19. B. Picconi, D. Centonze, K. Håkansson et al., “Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia,” Nature Neuroscience, vol. 6, no. 5, pp. 501–506, 2003. View at Scopus
  20. L. Carrillo-Reid, S. Hernández-López, D. Tapia, E. Galarraga, and J. Bargas, “Dopaminergic modulation of the striatal microcircuit: receptor-specific configuration of cell assemblies,” Journal of Neuroscience, vol. 31, no. 42, pp. 14972–14983, 2011. View at Publisher · View at Google Scholar · View at Scopus
  21. L. Li and F. M. Zhou, “Parallel dopamine D1 receptor activity dependence of L-dopa-induced normal movement and dyskinesia in mice,” Neuroscience, vol. 236, pp. 66–76, 2013. View at Publisher · View at Google Scholar
  22. L. Carrillo-Reid, F. Tecuapetla, D. Tapia et al., “Encoding network states by striatal cell assemblies,” Journal of Neurophysiology, vol. 99, no. 3, pp. 1435–1450, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. L. Carrillo-Reid, F. Tecuapetla, O. Ibáñez-Sandoval, A. Hernández-Cruz, E. Galarraga, and J. Bargas, “Activation of the cholinergic system endows compositional properties to striatal cell assemblies,” Journal of Neurophysiology, vol. 101, no. 2, pp. 737–749, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. V. G. López-Huerta, E. Blanco-Hernández, J. Bargas, and E. Galarraga, “Presynaptic modulation by somatostatin in the rat neostriatum is altered in a model of Parkinsonism,” Journal of Neurophysiology, vol. 108, no. 4, pp. 1032–1043, 2012.
  25. J. D. J. Aceves, P. E. Rueda-Orozco, R. Hernández et al., “Dopaminergic presynaptic modulation of nigral afferents: Its role in the generation of recurrent bursting in substantia nigra pars reticulata neurons,” Frontiers in Systems Neuroscience, no. 4, article 6, 2011. View at Publisher · View at Google Scholar · View at Scopus