About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 524324, 9 pages
http://dx.doi.org/10.1155/2013/524324
Research Article

Estrogen Signaling through Estrogen Receptor Beta and G-Protein-Coupled Estrogen Receptor 1 in Human Cerebral Vascular Endothelial Cells: Implications for Cerebral Aneurysms

Australian School of Advanced Medicine, Macquarie University, 2 Technology Place, North Ryde, Sydney, NSW 2109, Australia

Received 27 August 2013; Accepted 28 September 2013

Academic Editor: Robert M. Starke

Copyright © 2013 Jian Tu and Nurul F. Jufri. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. W. T. Longstreth Jr., L. M. Nelson, T. D. Koepsell, and G. van Belle, “Subarachnoid hemorrhage and hormonal factors in women: a population-based case-control study,” Annals of Internal Medicine, vol. 121, no. 3, pp. 168–173, 1994. View at Scopus
  2. M. S. Ali, R. M. Starke, P. M. Jabbour, S. I. Tjoumakaris, L. F. Gonzalez, R. H. Rosenwasser, et al., “TNF-a induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology,” Journal of Cerebral Blood Flow & Metabolism, vol. 33, pp. 1564–1573, 2013. View at Publisher · View at Google Scholar
  3. N. Chalouhi, M. S. Ali, P. M. Jabbour, et al., “Biology of intracranial aneurysms: role of inflammation,” Journal of Cerebral Blood Flow & Metabolism, vol. 32, no. 9, pp. 1659–1676, 2012.
  4. Y. Kanematsu, M. Kanematsu, C. Kurihara et al., “Critical roles of macrophages in the formation of intracranial aneurysm,” Stroke, vol. 42, no. 1, pp. 173–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  5. S. E. Francis, J. Tu, Y. Qian, and A. P. Avolio, “A combination of genetic, molecular and haemodynamic risk factors contribute to the formation, enlargement and rupture of brain aneurysms,” Journal of Clinical Neuroscience, vol. 20, no. 7, pp. 912–918, 2013. View at Publisher · View at Google Scholar
  6. P. E. Norman and J. T. Powell, “Site specificity of aneurysmal disease,” Circulation, vol. 121, no. 4, pp. 560–568, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. R. E. de Meersman, A. S. Zion, E. G. V. Giardina, J. P. Weir, J. S. Lieberman, and J. A. Downey, “Estrogen replacement, vascular distensibility, and blood pressures in postmenopausal women,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 274, no. 5, pp. H1539–H1544, 1998. View at Scopus
  8. R. Stricker, R. Eberhart, M.-C. Chevailler, F. A. Quinn, P. Bischof, and R. Stricker, “Establishment of detailed reference values for luteinizing hormone, follicle stimulating hormone, estradiol, and progesterone during different phases of the menstrual cycle on the Abbott ARCHITECT analyzer,” Clinical Chemistry and Laboratory Medicine, vol. 44, no. 7, pp. 883–887, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. C. J. Gruber, W. Tschugguel, C. Schneeberger, and J. C. Huber, “Mechanisms of disease: production and actions of estrogens,” The New England Journal of Medicine, vol. 346, no. 5, pp. 340–352, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. N. Heldring, A. Pike, S. Andersson et al., “Estrogen receptors: how do they signal and what are their targets,” Physiological Reviews, vol. 87, no. 3, pp. 905–931, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. E. R. Prossnitz, J. B. Arterburn, H. O. Smith, T. I. Oprea, L. A. Sklar, and H. J. Hathaway, “Estrogen signaling through the transmembrane G protein-coupled receptor GPR30,” Annual Review of Physiology, vol. 70, pp. 165–190, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. R. C. Tostes, D. Nigro, Z. B. Fortes, and M. H. C. Carvalho, “Effects of estrogen on the vascular system,” Brazilian Journal of Medical and Biological Research, vol. 36, no. 9, pp. 1143–1158, 2003. View at Scopus
  13. S. Liu, V. Sammons, J. Fairhall, et al., “Molecular responses of brain endothelial cells to radiation,” Journal of Clinical Neuroscience, vol. 19, no. 8, pp. 1154–1158, 2012.
  14. J. L. Hintze, “Analysis of variance,” in Number Cruncher Statistical Systems (NCSS) 97-User’s Guide-I, pp. 205–278, NCSS, Kaysville, Utah, USA, 1997.
  15. C. Stirone, S. P. Duckles, and D. N. Krause, “Multiple forms of estrogen receptor-α in cerebral blood vessels: regulation by estrogen,” American Journal of Physiology—Endocrinology and Metabolism, vol. 284, no. 1, pp. E184–E192, 2003. View at Scopus
  16. B. J. Deroo and K. S. Korach, “Estrogen receptors and human disease,” Journal of Clinical Investigation, vol. 116, no. 3, pp. 561–570, 2006. View at Publisher · View at Google Scholar · View at Scopus
  17. E. R. Prossnitz and M. Barton, “The G-protein-coupled estrogen receptor GPER in health and disease,” Nature Reviews Endocrinology, vol. 7, no. 12, pp. 715–726, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. P. Thomas, Y. Pang, E. J. Filardo, and J. Dong, “Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells,” Endocrinology, vol. 146, no. 2, pp. 624–632, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. C. M. Revankar, D. F. Cimino, L. A. Sklar, J. B. Arterburn, and E. R. Prossnitz, “A transmembrane intracellular estrogen receptor mediates rapid cell signaling,” Science, vol. 307, no. 5715, pp. 1625–1630, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. F. Gobeil Jr., A. Fortier, T. Zhu et al., “G-protein-coupled receptors signalling at the cell nucleus: an emerging paradigm,” Canadian Journal of Physiology and Pharmacology, vol. 84, no. 3-4, pp. 287–297, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. E. R. Prossnitz, J. B. Arterburn, and L. A. Sklar, “GPR30: a G protein-coupled receptor for estrogen,” Molecular and Cellular Endocrinology, vol. 265-266, pp. 138–142, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. J. Filardo, J. A. Quinn, A. Raymond Frackelton Jr., and K. I. Bland, “Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis,” Molecular Endocrinology, vol. 16, no. 1, pp. 70–84, 2002. View at Publisher · View at Google Scholar · View at Scopus
  23. N. Kanda and S. Watanabe, “17β-estradiol inhibits oxidative stress-induced apoptosis in keratinocytes by promoting Bcl-2 expression,” Journal of Investigative Dermatology, vol. 121, no. 6, pp. 1500–1509, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. N. Kanda and S. Watanabe, “17β-estradiol enhances the production of nerve growth factor in THP-1-derived macrophages or peripheral blood monocyte-derived macrophages,” Journal of Investigative Dermatology, vol. 121, no. 4, pp. 771–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Kanda and S. Watanabe, “17β-estradiol stimulates the growth of human keratinocytes by inducing cyclin D2 expression,” Journal of Investigative Dermatology, vol. 123, no. 2, pp. 319–328, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. M. Maggiolini, A. Vivacqua, G. Fasanella et al., “The G protein-coupled receptor GPR30 Mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells,” Journal of Biological Chemistry, vol. 279, no. 26, pp. 27008–27016, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. E. J. Filardo, J. A. Quinn, K. I. Bland, and A. R. Frackelton Jr., “Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF,” Molecular Endocrinology, vol. 14, no. 10, pp. 1649–1660, 2000. View at Scopus
  28. E. Brailoiu, S. L. Dun, G. C. Brailoiu et al., “Distribution and characterization of estrogen receptor G protein-coupled receptor 30 in the rat central nervous system,” Journal of Endocrinology, vol. 193, no. 2, pp. 311–321, 2007. View at Publisher · View at Google Scholar · View at Scopus
  29. F. Edwin, G. J. Wiepz, R. Singh et al., “A historical perspective of the EGF receptor and related systems,” Methods in Molecular Biology, vol. 327, pp. 1–24, 2006. View at Scopus
  30. E. J. Filardo and P. Thomas, “GPR30: a seven-transmembrane-spanning estrogen receptor that triggers EGF release,” Trends in Endocrinology and Metabolism, vol. 16, no. 8, pp. 362–367, 2005. View at Publisher · View at Google Scholar · View at Scopus
  31. M. R. Meyer, E. Haas, E. R. Prossnitz, and M. Barton, “Non-genomic regulation of vascular cell function and growth by estrogen,” Molecular and Cellular Endocrinology, vol. 308, no. 1-2, pp. 9–16, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. N. F. Jufri, M. Baker, and J. Tu, “Estrogen deficiency reduces cellular structural protein synthesis in a cell model of aneurysm in menopausal and postmenopausal women,” in Proceedings of the Asia Pacific Stroke Conference, Hong Kong, China, August-September 2013.
  33. M. Chen, B. Ouyang, L. Goldstein-Smith, and L. Feldman, “Oral contraceptive and hormone replacement therapy in women with cerebral aneurysms,” Journal of NeuroInterventional Surgery, vol. 3, no. 2, pp. 163–166, 2011. View at Publisher · View at Google Scholar · View at Scopus
  34. M. A. Jamous, S. Nagahiro, K. T. Kitazato, T. Tamura, K. Kuwayama, and K. Satoh, “Role of estrogen deficiency in the formation and progression of cerebral aneurysms. Part II: experimental study of the effects of hormone replacement therapy in rats,” Journal of Neurosurgery, vol. 103, no. 6, pp. 1052–1057, 2005. View at Publisher · View at Google Scholar · View at Scopus