About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 524820, 12 pages
http://dx.doi.org/10.1155/2013/524820
Review Article

Nutrition and the Risk of Alzheimer's Disease

1Department of Neurology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Number 5 Donghai Middle Road, Qingdao 266071, China
2College of Medicine and Pharmaceutics, Ocean University of China, Qingdao 266003, China

Received 10 April 2013; Revised 5 June 2013; Accepted 10 June 2013

Academic Editor: Mikko Hiltunen

Copyright © 2013 Nan Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Blennow, M. J. de Leon, and H. Zetterberg, “Alzheimer's disease,” The Lancet, vol. 368, no. 9533, pp. 387–403, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. G. A. Jicha and S. A. Carr, “Conceptual evolution in Alzheimer's disease: implications for understanding the clinical phenotype of progressive neurodegenerative disease,” Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 253–272, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. R. Brookmeyer, E. Johnson, K. Ziegler-Graham, and H. M. Arrighi, “Forecasting the global burden of Alzheimer's disease,” Alzheimer's and Dementia, vol. 3, no. 3, pp. 186–191, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Jiang, J. T. Yu, and L. Tan, “Novel disease-modifying therapies for Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 31, no. 3, pp. 475–492, 2012.
  5. J. W. Williams, B. L. Plassman, J. Burke, and S. Benjamin, “Preventing Alzheimer's disease and cognitive decline,” Evidence Report/Technology Assessment, no. 193, pp. 1–727, 2010. View at Scopus
  6. R. Dosunmu, J. Wu, M. R. Basha, and N. H. Zawia, “Environmental and dietary risk factors in Alzheimer's disease,” Expert Review of Neurotherapeutics, vol. 7, no. 7, pp. 887–900, 2007. View at Publisher · View at Google Scholar · View at Scopus
  7. F. C. Lau, B. Shukitt-Hale, and J. A. Joseph, “Nutritional intervention in brain aging: reducing the effects of inflammation and oxidative stress,” Sub-cellular biochemistry, vol. 42, pp. 299–318, 2007. View at Scopus
  8. R. Shah, “The role of nutrition and diet in Alzheimer disease: a systematic review,” Journal of the American Medical Directors Association, 2013. View at Publisher · View at Google Scholar
  9. C. Ramassamy and A. Belkacémi, “Nutrition and alzheimer's disease: is there any connection?” Current Alzheimer Research, vol. 8, no. 5, pp. 443–444, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. F. B. Hu, “Dietary pattern analysis: a new direction in nutritional epidemiology,” Current Opinion in Lipidology, vol. 13, no. 1, pp. 3–9, 2002.
  11. A. L. Fitzpatrick, L. H. Kuller, O. L. Lopez et al., “Midlife and late-life obesity and the risk of dementia: cardiovascular health study,” Archives of Neurology, vol. 66, no. 3, pp. 336–342, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. M. Kivipelto, T. Ngandu, L. Fratiglioni et al., “Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease,” Archives of Neurology, vol. 62, no. 10, pp. 1556–1560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. J. A. Luchsinger, D. Cheng, M. X. Tang, N. Schupf, and R. Mayeux, “Central obesity in the elderly is related to late-onset Alzheimer disease,” Alzheimer Disease & Associated Disorders, vol. 26, no. 2, pp. 101–105, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. A. Luchsinger and D. R. Gustafson, “Adiposity and Alzheimer's disease,” Current Opinion in Clinical Nutrition & Metabolic Care, vol. 12, no. 1, pp. 15–21, 2009.
  15. Y. Guigoz, S. Lauque, and B. J. Vellas, “Identifying the elderly at risk for malnutrition the mini nutritional assessment,” Clinics in Geriatric Medicine, vol. 18, no. 4, pp. 737–757, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Saragat, R. Buffa, E. Mereu et al., “Nutritional and psycho-functional status in elderly patients with Alzheimer's disease,” Journal of Nutrition, Health and Aging, vol. 16, no. 3, pp. 231–236, 2012. View at Publisher · View at Google Scholar · View at Scopus
  17. P.-J. Ousset, F. Nourhashemi, E. Reynish, and B. Vellas, “Nutritional status is associated with disease progression in very mild Alzheimer disease,” Alzheimer Disease and Associated Disorders, vol. 22, no. 1, pp. 66–71, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. M. E. Soto, M. Secher, S. Gillette-Guyonnet et al., “Weight loss and rapid cognitive decline in community-dwelling patients with Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 28, no. 3, pp. 647–654, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. T. A. Clark, H. P. Lee, R. K. Rolston et al., “Oxidative stress and its implications for future treatments and management of alzheimer disease,” International Journal of Biomedical Science, vol. 6, no. 3, pp. 225–227, 2010. View at Scopus
  20. K. Ono and M. Yamada, “Vitamin A and Alzheimer's disease,” Geriatrics and Gerontology International, vol. 12, no. 2, pp. 180–188, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Viña, A. Lloret, E. Giraldo, M. C. Badia, and M. D. Alonso, “Antioxidant pathways in Alzheimer's disease: possibilities of intervention,” Current Pharmaceutical Design, vol. 17, no. 35, pp. 3861–3864, 2011. View at Scopus
  22. J. Takasaki, K. Ono, Y. Yoshiike et al., “Vitamin A has anti-oligomerization effects on amyloid-β in vitro,” Journal of Alzheimer's Disease, vol. 27, no. 2, pp. 271–280, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. I. Bourdel-Marchasson, M.-C. Delmas-Beauviex, E. Peuchant et al., “Antioxidant defences and oxidative stress markers in erythrocytes and plasma from normally nourished elderly Alzheimer patients,” Age and Ageing, vol. 30, no. 3, pp. 235–241, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. F. J. Jimenez-Jimenez, J. A. Molina, F. de Bustos, et al., “Serum levels of beta-carotene, alpha-carotene and vitamin A in patients with Alzheimer's disease,” European Journal of Neurology, vol. 6, no. 4, pp. 495–497, 1999.
  25. W. J. Perrig, P. Perrig, and H. B. Stähelin, “The relation between antioxidants and memory performance in the old and very old,” Journal of the American Geriatrics Society, vol. 45, no. 6, pp. 718–724, 1997. View at Scopus
  26. P. Montilla-López, M. C. Muoz-Águeda, M. Feijóo López, J. R. Muoz-Castaeda, I. Bujalance-Arenas, and I. Túnez-Fiana, “Comparison of melatonin versus vitamin C on oxidative stress and antioxidant enzyme activity in Alzheimer's disease induced by okadaic acid in neuroblastoma cells,” European Journal of Pharmacology, vol. 451, no. 3, pp. 237–243, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. Murakami, N. Murata, Y. Ozawa et al., “Vitamin C restores behavioral deficits and amyloid-β oligomerization without affecting plaque formation in a mouse model of alzheimer's disease,” Journal of Alzheimer's Disease, vol. 26, no. 1, pp. 7–18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Luchsinger, M.-X. Tang, S. Shea, and R. Mayeux, “Antioxidant vitamin intake and risk of Alzheimer disease,” Archives of Neurology, vol. 60, no. 2, pp. 203–208, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. E. E. Devore, F. Grodstein, F. J. A. van Rooij et al., “Dietary antioxidants and long-term risk of dementia,” Archives of Neurology, vol. 67, no. 7, pp. 819–825, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. P. P. Zandi, J. C. Anthony, A. S. Khachaturian et al., “Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study,” Archives of Neurology, vol. 61, no. 1, pp. 82–88, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. F. E. Harrison, “A critical review of vitamin C for the prevention of age-related cognitive decline and alzheimer's disease,” Journal of Alzheimer's Disease, vol. 29, no. 4, pp. 711–726, 2012. View at Publisher · View at Google Scholar · View at Scopus
  32. J.-Z. Guan, W.-P. Guan, T. Maeda, and N. Makino, “Effect of vitamin E administration on the elevated oxygen stress and the telomeric and subtelomeric status in Alzheimer's disease,” Gerontology, vol. 58, no. 1, pp. 62–69, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. N. Kaneai, M. Arai, H. Takatsu, K. Fukui, and S. Urano, “Vitamin E inhibits oxidative stress-induced denaturation of nerve terminal proteins involved in neurotransmission,” Journal of Alzheimer's Disease, vol. 28, no. 1, pp. 183–189, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. S. Khanna, N. L. Parinandi, S. R. Kotha et al., “Nanomolar vitamin e α-tocotrienol inhibits glutamate-induced activation of phospholipase A2 and causes neuroprotection,” Journal of Neurochemistry, vol. 112, no. 5, pp. 1249–1260, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. S. M. Yatin, S. Varadarajan, and D. A. Butterfield, “Vitamin E prevents Alzheimer's amyloid β-peptide (1-42)-induced neuronal protein oxidation and reactive oxygen species production,” Journal of Alzheimer's Disease, vol. 2, no. 2, pp. 123–131, 2000. View at Scopus
  36. F. Mangialasche, W. Xu, M. Kivipelto et al., “Tocopherols and tocotrienols plasma levels are associated with cognitive impairment,” Neurobiology of Aging, 2011. View at Publisher · View at Google Scholar · View at Scopus
  37. M. C. Morris, D. A. Evans, C. C. Tangney et al., “Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change,” American Journal of Clinical Nutrition, vol. 81, no. 2, pp. 508–514, 2005. View at Scopus
  38. J. H. Kang, N. Cook, J. Manson, J. E. Buring, and F. Grodstein, “A randomized trial of vitamin E supplementation and cognitive function in women,” Archives of Internal Medicine, vol. 166, no. 22, pp. 2462–2468, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. M. G. E. K. N. Isaac, R. Quinn, and N. Tabet, “Vitamin E for Alzheimer's disease and mild cognitive impairment,” Cochrane Database of Systematic Reviews, no. 3, Article ID CD002854, 2008. View at Scopus
  40. M. Loef, G. N. Schrauzer, and H. Walach, “Selenium and alzheimer's disease: a systematic review,” Journal of Alzheimer's Disease, vol. 26, no. 1, pp. 81–104, 2011. View at Publisher · View at Google Scholar · View at Scopus
  41. T. Ishrat, K. Parveen, M. M. Khan et al., “Selenium prevents cognitive decline and oxidative damage in rat model of streptozotocin-induced experimental dementia of Alzheimer's type,” Brain Research, vol. 1281, pp. 117–127, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. J. Mohamed, W. L. Wei, N. N. A. Husin, N. Y. Alwahaibi, and S. B. Budin, “Selenium supplementation reduced oxidative stress in diethylnitrosamine-induced hepatocellular carcinoma in rats,” Pakistan Journal of Biological Sciences, vol. 14, no. 23, pp. 1055–1060, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. B. R. Cardoso, T. P. Ong, W. Jacob-Filho, O. Jaluul, M. I. D. Freitas, and S. M. F. Cozzolino, “Nutritional status of selenium in Alzheimer's disease patients,” British Journal of Nutrition, vol. 103, no. 6, pp. 803–806, 2010. View at Publisher · View at Google Scholar · View at Scopus
  44. R. K. Chandra, “Effect of vitamin and trace-element supplementation on cognitive function in elderly subjects,” Nutrition, vol. 17, no. 9, pp. 709–712, 2001. View at Publisher · View at Google Scholar · View at Scopus
  45. U. Cornelli, “Treatment of Alzheimer's disease with a cholinesterase inhibitor combined with antioxidants,” Neurodegenerative Diseases, vol. 7, no. 1–3, pp. 193–202, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. P. Scheltens, P. J. G. H. Kamphuis, F. R. J. Verhey et al., “Efficacy of a medical food in mild Alzheimer's disease: a randomized, controlled trial,” Alzheimer's and Dementia, vol. 6, no. 1, pp. 1.e1–10.e1, 2010. View at Publisher · View at Google Scholar · View at Scopus
  47. D.-Y. Choi, Y.-J. Lee, J. T. Hong, and H.-J. Lee, “Antioxidant properties of natural polyphenols and their therapeutic potentials for Alzheimer's disease,” Brain Research Bulletin, vol. 87, no. 2-3, pp. 144–153, 2012. View at Publisher · View at Google Scholar · View at Scopus
  48. M. E. Obrenovich, N. G. Nair, A. Beyaz, G. Aliev, and V. P. Reddy, “The role of polyphenolic antioxidants in health, disease, and aging,” Rejuvenation Research, vol. 13, no. 6, pp. 631–643, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. L. Rojanathammanee, K. L. Puig, and C. K. Combs, “Pomegranate polyphenols and extract inhibit nuclear factor of activated T-cell activity and microglial activation in vitro and in a transgenic mouse model of Alzheimer disease,” Journal of Nutrition, vol. 143, no. 5, pp. 597–605, 2013.
  50. R. E. Hartman, A. Shah, A. M. Fagan et al., “Pomegranate juice decreases amyloid load and improves behavior in a mouse model of Alzheimer's disease,” Neurobiology of Disease, vol. 24, no. 3, pp. 506–515, 2006. View at Publisher · View at Google Scholar · View at Scopus
  51. L. Ho, L. H. Chen, J. Wang et al., “Heterogeneity in red wine polyphenolic contents differentially influences Alzheimer's disease-type neuropathology and cognitive deterioration,” Journal of Alzheimer's Disease, vol. 16, no. 1, pp. 59–72, 2009. View at Publisher · View at Google Scholar · View at Scopus
  52. T. Mori, K. Rezai-Zadeh, N. Koyama et al., “Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice,” Journal of Biological Chemistry, vol. 287, no. 9, pp. 6912–6927, 2012. View at Publisher · View at Google Scholar · View at Scopus
  53. J. Wang, L. Ho, W. Zhao et al., “Grape-derived polyphenolics prevent Aβ oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease,” Journal of Neuroscience, vol. 28, no. 25, pp. 6388–6392, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. J. Wang, L. Ho, Z. Zhao et al., “Moderate consumption of Cabernet Sauvignon attenuates Aβ neuropathology in a mouse model of Alzheimer's disease,” The FASEB Journal, vol. 20, no. 13, pp. 2313–2320, 2006. View at Publisher · View at Google Scholar · View at Scopus
  55. D. R. Galasko, E. Peskind, C. M. Clark, et al., “Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures,” Archives of Neurology, vol. 69, no. 7, pp. 836–841, 2012.
  56. A. Hashim, L. Wanga, K. Junej, Y. Yeb, Y. Zhao, and L.-J. Ming, “Vitamin b6s inhibit oxidative stress caused by Alzheimer's disease-related cuII-b-amyloid complexes-cooperative action of phospho-moiety,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 21, pp. 6430–6432, 2011. View at Publisher · View at Google Scholar · View at Scopus
  57. R. Nilforooshan, D. Broadbent, G. Weaving et al., “Homocysteine in Alzheimer's disease: role of dietary folate, vitamin B6 and B12,” International Journal of Geriatric Psychiatry, vol. 26, no. 8, pp. 876–877, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Cito, B. Porcelli, M. G. Coppola, P. Mangiavacchi, A. Cortelazzo, and L. Terzuoli, “Analysis of serum levels of homocysteine and oxidative stress markers in patients with Alzheimer disease,” Biomedicine & Pharmacotherapy, 2010. View at Publisher · View at Google Scholar · View at Scopus
  59. G. Ravaglia, P. Forti, F. Maioli et al., “Homocysteine and folate as risk factors for dementia and Alzheimer disease,” American Journal of Clinical Nutrition, vol. 82, no. 3, pp. 636–643, 2005. View at Scopus
  60. F. van Dam and W. A. van Gool, “Hyperhomocysteinemia and Alzheimer's disease: a systematic review,” Archives of Gerontology and Geriatrics, vol. 48, no. 3, pp. 425–430, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. R. C. M. Ho, M. W. L. Cheung, E. Fu et al., “Is high homocysteine level a risk factor for cognitive decline in elderly? a systematic review, meta-analysis, and meta-regression,” American Journal of Geriatric Psychiatry, vol. 19, no. 7, pp. 607–617, 2011. View at Publisher · View at Google Scholar · View at Scopus
  62. P. S. Aisen, L. S. Schneider, M. Sano et al., “High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial,” Journal of the American Medical Association, vol. 300, no. 15, pp. 1774–1783, 2008. View at Publisher · View at Google Scholar · View at Scopus
  63. M. Ozawa, T. Ninomiya, T. Ohara, et al., “Dietary patterns and risk of dementia in an elderly Japanese population: the Hisayama study,” The American Journal of Clinical Nutrition, vol. 97, no. 5, pp. 1076–1082, 2013.
  64. E. Kesse-Guyot, V. A. Andreeva, C. Jeandel, M. Ferry, S. Hercberg, and P. Galan, “A healthy dietary pattern at midlife is associated with subsequent cognitive performance,” Journal of Nutrition, vol. 142, no. 5, pp. 909–915, 2012. View at Publisher · View at Google Scholar
  65. C. Samieri, M.-A. Jutand, C. Féart, L. Capuron, L. Letenneur, and P. Barberger-Gateau, “Dietary patterns derived by hybrid clustering method in older people: association with cognition, mood, and self-rated health,” Journal of the American Dietetic Association, vol. 108, no. 9, pp. 1461–1471, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. M. H. Eskelinen, T. Ngandu, J. Tuomilehto, H. Soininen, and M. Kivipelto, “Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study,” Journal of Alzheimer's Disease, vol. 16, no. 1, pp. 85–91, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. P. J. Smith, J. A. Blumenthal, M. A. Babyak et al., “Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure,” Hypertension, vol. 55, no. 6, pp. 1331–1338, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. N. Scarmeas, Y. Stern, R. Mayeux, and J. A. Luchsinger, “Mediterranean diet, alzheimer disease, and vascular mediation,” Archives of Neurology, vol. 63, no. 12, pp. 1709–1717, 2006. View at Publisher · View at Google Scholar · View at Scopus
  69. N. Scarmeas, Y. Stern, R. Mayeux, J. J. Manly, N. Schupf, and J. A. Luchsinger, “Mediterranean diet and mild cognitive impairment,” Archives of Neurology, vol. 66, no. 2, pp. 216–225, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. C. Féart, C. Samieri, V. Rondeau et al., “Adherence to a mediterranean diet, cognitive decline, and risk of dementia,” Journal of the American Medical Association, vol. 302, no. 6, pp. 638–648, 2009. View at Publisher · View at Google Scholar · View at Scopus
  71. C. C. Tangney, M. J. Kwasny, H. Li, R. S. Wilson, D. A. Evans, and M. C. Morris, “Adherence to a Mediterranean-type dietary pattern and cognitive decline in a community population,” American Journal of Clinical Nutrition, vol. 93, no. 3, pp. 601–607, 2011. View at Publisher · View at Google Scholar · View at Scopus
  72. M. M. Corrada, C. H. Kawas, J. Hallfrisch, D. Muller, and R. Brookmeyer, “Reduced risk of Alzheimer's disease with high folate intake: the Baltimore Longitudinal Study of Aging,” Alzheimer's and Dementia, vol. 1, no. 1, pp. 11–18, 2005. View at Publisher · View at Google Scholar · View at Scopus
  73. J. A. Luchsinger, M.-X. Tang, J. Miller, R. Green, and R. Mayeux, “Relation of higher folate intake to lower risk of Alzheimer disease in the elderly,” Archives of Neurology, vol. 64, no. 1, pp. 86–92, 2007. View at Publisher · View at Google Scholar · View at Scopus
  74. D. S. Wald, A. Kasturiratne, and M. Simmonds, “Effect of folic acid, with or without other B vitamins, on cognitive decline: meta-analysis of randomized trials,” American Journal of Medicine, vol. 123, no. 6, pp. 522–527.e2, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. T. Kwok, J. Lee, C. B. Law et al., “A randomized placebo controlled trial of homocysteine lowering to reduce cognitive decline in older demented people,” Clinical Nutrition, vol. 30, no. 3, pp. 297–302, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. C. A. de Jager, A. Oulhaj, R. Jacoby, H. Refsum, and A. D. Smith, “Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial,” International Journal of Geriatric Psychiatry, vol. 27, no. 6, pp. 592–600, 2012. View at Publisher · View at Google Scholar · View at Scopus
  77. A. D. Dangour, P. J. Whitehouse, K. Rafferty et al., “B-vitamins and fatty acids in the prevention and treatment of Alzheimer's disease and dementia: a systematic review,” Journal of Alzheimer's Disease, vol. 22, no. 1, pp. 205–224, 2010. View at Publisher · View at Google Scholar · View at Scopus
  78. Y. Gu, N. Schupf, S. A. Cosentino, J. A. Luchsinger, and N. Scarmeas, “Nutrient intake and plasma beta-amyloid,” Neurology, vol. 78, no. 23, pp. 1832–1840.
  79. D. J. Lehmann, H. Refsum, D. R. Warden, C. Medway, G. K. Wilcock, and A. D. Smith, “The vitamin D receptor gene is associated with Alzheimer's disease,” Neuroscience Letters, vol. 504, no. 2, pp. 79–82, 2011. View at Publisher · View at Google Scholar · View at Scopus
  80. L. Wang, K. Hara, J. M. van Baaren, et al., “Vitamin D receptor and Alzheimer's disease: a genetic and functional study,” Neurobiol Aging, vol. 33, no. 8, pp. 1844.e1–1844.e9, 2012. View at Publisher · View at Google Scholar
  81. C. Annweiler, D. J. Llewellyn, and O. Beauchet, “Low serum vitamin D concentrations in Alzheimer's disease: a systematic review and meta-analysis,” Journal of Alzheimer's Disease, vol. 33, no. 3, pp. 659–674, 2013.
  82. Y. Slinin, M. L. Paudel, B. C. Taylor et al., “25-hydroxyvitamin D levels and cognitive performance and decline in elderly men,” Neurology, vol. 74, no. 1, pp. 33–41, 2010. View at Publisher · View at Google Scholar · View at Scopus
  83. C. Annweiler, A. M. Schott, Y. Rolland, H. Blain, F. R. Herrmann, and O. Beauchet, “Dietary intake of vitamin D and cognition in older women: a large population-based study,” Neurology, vol. 75, no. 20, pp. 1810–1816, 2010. View at Publisher · View at Google Scholar · View at Scopus
  84. C. Annweiler and O. Beauchet, “Vitamin D-Mentia: randomized clinical trials should be the next step,” Neuroepidemiology, vol. 37, no. 3-4, pp. 249–258, 2011. View at Publisher · View at Google Scholar · View at Scopus
  85. T. J. A. Craddock, J. A. Tuszynski, D. Chopra et al., “The zinc dyshomeostasis hypothesis of Alzheimer's disease,” PLoS ONE, vol. 7, no. 3, Article ID e33552, 2012. View at Publisher · View at Google Scholar · View at Scopus
  86. M. Schrag, C. Mueller, U. Oyoyo, M. A. Smith, and W. M. Kirsch, “Iron, zinc and copper in the Alzheimer's disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion,” Progress in Neurobiology, vol. 94, no. 3, pp. 296–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  87. L. W. Hung and K. J. Barnham, “Modulating metals as a therapeutic strategy for Alzheimer's disease,” Future Medicinal Chemistry, vol. 4, no. 8, pp. 955–969, 2012.
  88. A. I. Bush, “Drug development based on the metals hypothesis of Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 15, no. 2, pp. 223–240, 2008. View at Scopus
  89. M. Loef and H. Walach, “Copper and iron in Alzheimer's disease: a systematic review and its dietary implications,” British Journal of Nutrition, vol. 107, no. 1, pp. 7–19, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. M. C. Morris, D. A. Evans, C. C. Tangney et al., “Dietary copper and high saturated and trans fat intakes associated with cognitive decline,” Archives of Neurology, vol. 63, no. 8, pp. 1085–1088, 2006. View at Publisher · View at Google Scholar · View at Scopus
  91. S. Bucossi, M. Ventriglia, V. Panetta et al., “Copper in alzheimer's disease: a meta-analysis of serum,plasma, and cerebrospinal fluid studies,” Journal of Alzheimer's Disease, vol. 24, no. 1, pp. 175–185, 2011. View at Publisher · View at Google Scholar · View at Scopus
  92. R. Squitti, “Copper dysfunction in Alzheimer's disease: from meta-analysis of biochemical studies to new insight into genetics,” Journal of Trace Elements in Medicine and Biology, 2012. View at Publisher · View at Google Scholar · View at Scopus
  93. H. Kessler, T. A. Bayer, D. Bach et al., “Intake of copper has no effect on cognition in patients with mild Alzheimer's disease: a pilot phase 2 clinical trial,” Journal of Neural Transmission, vol. 115, no. 8, pp. 1181–1187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  94. R. J. Castellani, P. I. Moreira, G. Perry, and X. Zhu, “The role of iron as a mediator of oxidative stress in Alzheimer disease,” BioFactors, vol. 38, no. 2, pp. 133–138, 2012. View at Publisher · View at Google Scholar · View at Scopus
  95. M. A. Smith, X. Zhu, M. Tabaton et al., “Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment,” Journal of Alzheimer's Disease, vol. 19, no. 1, pp. 353–372, 2010. View at Publisher · View at Google Scholar · View at Scopus
  96. M. Falkingham, A. Abdelhamid, P. Curtis, S. Fairweather-Tait, L. Dye, and L. Hooper, “The effects of oral iron supplementation on cognition in older children and adults: a systematic review and meta-analysis,” Nutrition Journal, vol. 9, no. 1, article 4, 2010. View at Publisher · View at Google Scholar · View at Scopus
  97. C. Corona, F. Masciopinto, E. Silvestri et al., “Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction,” Cell Death & Disease, vol. 1, p. e91, 2010. View at Publisher · View at Google Scholar · View at Scopus
  98. G. J. Brewer, “Copper excess, zinc deficiency, and cognition loss in Alzheimer's disease,” BioFactors, vol. 38, no. 2, pp. 107–113, 2012. View at Publisher · View at Google Scholar · View at Scopus
  99. O. I. Okereke, B. A. Rosner, D. H. Kim, et al., “Dietary fat types and 4-year cognitive change in community-dwelling older women,” Annals of Neurology, vol. 72, no. 1, pp. 124–134, 2012.
  100. S. Borniquel, E. Å. Jansson, M. P. Cole, B. A. Freeman, and J. O. Lundberg, “Nitrated oleic acid up-regulates PPARγ and attenuates experimental inflammatory bowel disease,” Free Radical Biology and Medicine, vol. 48, no. 4, pp. 499–505, 2010. View at Publisher · View at Google Scholar · View at Scopus
  101. E. K. Vassiliou, A. Gonzalez, C. Garcia, J. H. Tadros, G. Chakraborty, and J. H. Toney, “Oleic acid and peanut oil high in oleic acid reverse the inhibitory effect of insulin production of the inflammatory cytokine TNF-α both in vitro and in vivo systems,” Lipids in Health and Disease, vol. 8, article 25, 2009. View at Publisher · View at Google Scholar · View at Scopus
  102. R. Briante, F. Febbraio, and R. Nucci, “Antioxidant properties of low molecular weight phenols present in the mediterranean diet,” Journal of Agricultural and Food Chemistry, vol. 51, no. 24, pp. 6975–6981, 2003. View at Publisher · View at Google Scholar · View at Scopus
  103. A. Z. Naqvi, B. Harty, K. J. Mukamal, A. M. Stoddard, M. Vitolins, and J. E. Dunn, “Monounsaturated, trans, and saturated fatty acids and cognitive decline in women,” Journal of the American Geriatrics Society, vol. 59, no. 5, pp. 837–843, 2011. View at Publisher · View at Google Scholar · View at Scopus
  104. C. Boudrault, R. P. Bazinet, and D. W. L. Ma, “Experimental models and mechanisms underlying the protective effects of n-3 polyunsaturated fatty acids in Alzheimer's disease,” Journal of Nutritional Biochemistry, vol. 20, no. 1, pp. 1–10, 2009. View at Publisher · View at Google Scholar · View at Scopus
  105. G. A. Jicha and W. R. Markesbery, “Omega-3 fatty acids: potential role in the management of early Alzheimer's disease,” Clinical Interventions in Aging, vol. 5, no. 1, pp. 45–61, 2010. View at Scopus
  106. D. Swanson, R. Block, and S. A. Mousa, “Omega-3 fatty acids EPA and DHA: health benefits throughout life,” Advances in Nutrition, vol. 3, no. 1, pp. 1–7, 2012.
  107. I. Vedin, T. Cederholm, Y. Freund-Levi et al., “Effects of DHA-rich n-3 fatty acid supplementation on gene expression in blood mononuclear leukocytes: the omegAD study,” PLoS ONE, vol. 7, no. 4, Article ID e35425, 2012. View at Publisher · View at Google Scholar · View at Scopus
  108. P. Barberger-Gateau, J. C. Lambert, C. Feart, et al., “From genetics to dietetics: the contribution of epidemiology to understanding Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 33, supplement 1, pp. 457–463, 2013.
  109. F. Calon, G. P. Lim, F. Yang et al., “Docosahexaenoic acid protects from dendritic pathology in an Alzheimer's disease mouse model,” Neuron, vol. 43, no. 5, pp. 633–645, 2004. View at Publisher · View at Google Scholar · View at Scopus
  110. C. R. Hooijmans, C. E. E. M. van der Zee, P. J. Dederen et al., “DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPswe/PS1dE9 mice,” Neurobiology of Disease, vol. 33, no. 3, pp. 482–498, 2009. View at Publisher · View at Google Scholar · View at Scopus
  111. G. P. Lim, F. Calon, T. Morihara et al., “A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model,” Journal of Neuroscience, vol. 25, no. 12, pp. 3032–3040, 2005. View at Publisher · View at Google Scholar · View at Scopus
  112. S. E. Perez, B. M. Berg, K. A. Moore et al., “DHA diet reduces AD pathology in young APPswe/PS1ΔE9 transgenic mice: possible gender effects,” Journal of Neuroscience Research, vol. 88, no. 5, pp. 1026–1040, 2010. View at Publisher · View at Google Scholar · View at Scopus
  113. M. Fotuhi, P. Mohassel, and K. Yaffe, “Fish consumption, long-chain omega-3 fatty acids and risk of cognitive decline or Alzheimer disease: a complex association,” Nature Clinical Practice Neurology, vol. 5, no. 3, pp. 140–152, 2009. View at Publisher · View at Google Scholar · View at Scopus
  114. J. F. Quinn, R. Raman, R. G. Thomas et al., “Docosahexaenoic acid supplementation and cognitive decline in Alzheimer disease: a randomized trial,” Journal of the American Medical Association, vol. 304, no. 17, pp. 1903–1911, 2010. View at Publisher · View at Google Scholar · View at Scopus
  115. O. van de Rest, J. M. Geleijnse, F. J. Kok et al., “Effect of fish oil on cognitive performance in older subjects: a randomized, controlled trial,” Neurology, vol. 71, no. 6, pp. 430–438, 2008. View at Publisher · View at Google Scholar · View at Scopus
  116. O. van de Rest, J. M. Geleijnse, F. J. Kok et al., “Effect of fish-oil supplementation on mental well-being in older subjects: a randomized, double-blind, placebo-controlled trial,” American Journal of Clinical Nutrition, vol. 88, no. 3, pp. 706–713, 2008. View at Scopus
  117. V. Solfrizzi, V. Frisardi, C. Capurso et al., “Dietary fatty acids in dementia and predementia syndromes: epidemiological evidence and possible underlying mechanisms,” Ageing Research Reviews, vol. 9, no. 2, pp. 184–199, 2010. View at Publisher · View at Google Scholar · View at Scopus
  118. M. H. Laitinen, T. Ngandu, S. Rovio et al., “Fat intake at midlife and risk of dementia and Alzheimer's disease: a population-based study,” Dementia and Geriatric Cognitive Disorders, vol. 22, no. 1, pp. 99–107, 2006. View at Publisher · View at Google Scholar · View at Scopus
  119. M. O. Grimm, T. L. Rothhaar, S. Grosgen, et al., “Trans fatty acids enhance amyloidogenic processing of the Alzheimer amyloid precursor protein (APP),” The Journal of Nutritional Biochemistry, vol. 23, no. 10, pp. 1214–1223, 2012.
  120. Y. Liu, F. Liu, I. Grundke-Iqbal, K. Iqbal, and C.-X. Gong, “Deficient brain insulin signalling pathway in Alzheimer's disease and diabetes,” Journal of Pathology, vol. 225, no. 1, pp. 54–62, 2011. View at Publisher · View at Google Scholar · View at Scopus
  121. S. Craft, “Insulin resistance and Alzheimer's disease pathogenesis: potential mechanisms and implications for treatment,” Current Alzheimer Research, vol. 4, no. 2, pp. 147–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  122. L. Frölich, D. Blum-Degen, H.-G. Bernstein et al., “Brain insulin and insulin receptors in aging and sporadic Alzheimer's disease,” Journal of Neural Transmission, vol. 105, no. 4-5, pp. 423–438, 1998. View at Publisher · View at Google Scholar · View at Scopus
  123. E. Steen, B. M. Terry, E. J. Rivera et al., “Impaired insulin and insulin-like growth factor expression and signaling mechanisms in Alzheimer's disease—is this type 3 diabetes?” Journal of Alzheimer's Disease, vol. 7, no. 1, pp. 63–80, 2005. View at Scopus
  124. S. Kikuchi, K. Shinpo, M. Takeuchi et al., “Glycation—a sweet tempter for neuronal death,” Brain Research Reviews, vol. 41, no. 2-3, pp. 306–323, 2003. View at Publisher · View at Google Scholar · View at Scopus
  125. S. T. Henderson, “High carbohydrate diets and Alzheimer's disease,” Medical Hypotheses, vol. 62, no. 5, pp. 689–700, 2004. View at Publisher · View at Google Scholar · View at Scopus
  126. S. Seneff, G. Wainwright, and L. Mascitelli, “Nutrition and Alzheimer's disease: the detrimental role of a high carbohydrate diet,” European Journal of Internal Medicine, vol. 22, no. 2, pp. 134–140, 2011. View at Publisher · View at Google Scholar · View at Scopus
  127. J. A. Luchsinger, M.-X. Tang, and R. Mayeux, “Glycemic load and risk of Alzheimer's disease,” Journal of Nutrition, Health and Aging, vol. 11, no. 3, pp. 238–241, 2007. View at Scopus
  128. P. Barberger-Gateau, C. Raffaitin, L. Letenneur et al., “Dietary patterns and risk of dementia: the Three-City cohort study,” Neurology, vol. 69, no. 20, pp. 1921–1930, 2007. View at Publisher · View at Google Scholar · View at Scopus
  129. A. D. Dangour, E. Allen, D. Elbourne, A. Fletcher, M. Richards, and R. Uauy, “Fish consumption and cognitive function among older people in the UK: baseline data from the OPAL study,” Journal of Nutrition, Health and Aging, vol. 13, no. 3, pp. 198–203, 2009. View at Publisher · View at Google Scholar · View at Scopus
  130. T. L. Huang, P. P. Zandi, K. L. Tucker et al., “Benefits of fatty fish on dementia risk are stronger for those without APOE ε4,” Neurology, vol. 65, no. 9, pp. 1409–1414, 2005. View at Publisher · View at Google Scholar · View at Scopus
  131. M. C. Morris, D. A. Evans, J. L. Bienias et al., “Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease,” Archives of Neurology, vol. 60, no. 7, pp. 940–946, 2003. View at Publisher · View at Google Scholar · View at Scopus
  132. M. C. Morris, D. A. Evans, C. C. Tangney, J. L. Bienias, and R. S. Wilson, “Fish consumption and cognitive decline with age in a large community study,” Archives of Neurology, vol. 62, no. 12, pp. 1849–1853, 2005. View at Publisher · View at Google Scholar · View at Scopus
  133. T. F. Hughes, R. Andel, B. J. Small et al., “Midlife fruit and vegetable consumption and risk of dementia in later life in swedish twins,” American Journal of Geriatric Psychiatry, vol. 18, no. 5, pp. 413–420, 2010. View at Publisher · View at Google Scholar · View at Scopus
  134. M. C. Morris, D. A. Evans, C. C. Tangney, J. L. Bienias, and R. S. Wilson, “Associations of vegetable and fruit consumption with age-related cognitive change,” Neurology, vol. 67, no. 8, pp. 1370–1376, 2006. View at Publisher · View at Google Scholar · View at Scopus
  135. A. C. J. Nooyens, H. B. Bueno-De-Mesquita, M. P. J. van Boxtel, B. M. van Gelder, H. Verhagen, and W. M. M. Verschuren, “Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study,” British Journal of Nutrition, vol. 106, no. 5, pp. 752–761, 2011. View at Publisher · View at Google Scholar · View at Scopus
  136. G. E. Crichton, J. Bryan, K. J. Murphy, and J. Buckley, “Review of dairy consumption and cognitive performance in adults: findings and methodological issues,” Dementia and Geriatric Cognitive Disorders, vol. 30, no. 4, pp. 352–361, 2010. View at Publisher · View at Google Scholar · View at Scopus
  137. L. Lee, S. A. Kang, H. O. Lee et al., “Relationships between dietary intake and cognitive function level in Korean elderly people,” Public Health, vol. 115, no. 2, pp. 133–138, 2001. View at Publisher · View at Google Scholar · View at Scopus
  138. M. H. Eskelinen, T. Ngandu, E.-L. Helkala et al., “Fat intake at midlife and cognitive impairment later in life: a population-based CAIDE study,” International Journal of Geriatric Psychiatry, vol. 23, no. 7, pp. 741–747, 2008. View at Publisher · View at Google Scholar · View at Scopus
  139. M. H. Eskelinen and M. Kivipelto, “Caffeine as a protective factor in dementia and Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 20, no. 1, pp. S167–S174, 2010. View at Publisher · View at Google Scholar · View at Scopus
  140. G. W. Arendash and C. Cao, “Caffeine and coffee as therapeutics against Alzheimer's disease,” Journal of Alzheimer's Disease, vol. 20, no. 1, pp. S117–S126, 2010. View at Publisher · View at Google Scholar · View at Scopus
  141. C. Santos, J. Costa, J. Santos, A. Vaz-Carneiro, and N. Lunet, “Caffeine intake and dementia: systematic review and meta-analysis,” Journal of Alzheimer's Disease, vol. 20, no. 1, pp. S187–S204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  142. C. Cao, L. Wang, X. Lin et al., “Caffeine synergizes with another coffee component to increase plasma GCSF: linkage to cognitive benefits in Alzheimer's mice,” Journal of Alzheimer's Disease, vol. 25, no. 2, pp. 323–335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  143. J. L. Barranco Quintana, M. F. Allam, A. S. Del Castillo, and R. F.-C. Navajas, “Alzheimer's disease and coffee: a quantitative review,” Neurological Research, vol. 29, no. 1, pp. 91–95, 2007. View at Publisher · View at Google Scholar · View at Scopus
  144. L. Feng, X. Gwee, E.-H. Kua, and T.-P. Ng, “Cognitive function and tea consumption in community dwelling older Chinese in Singapore,” Journal of Nutrition, Health and Aging, vol. 14, no. 6, pp. 433–438, 2010. View at Publisher · View at Google Scholar · View at Scopus
  145. T.-P. Ng, L. Feng, M. Niti, E.-H. Kua, and K.-B. Yap, “Tea consumption and cognitive impairment and decline in older Chinese adults,” American Journal of Clinical Nutrition, vol. 88, no. 1, pp. 224–231, 2008. View at Scopus
  146. E. A. De Bruin, M. J. Rowson, L. van Buren, J. A. Rycroft, and G. N. Owen, “Black tea improves attention and self-reported alertness,” Appetite, vol. 56, no. 2, pp. 235–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  147. S. A. Mandel, T. Amit, L. Kalfon, L. Reznichenko, and M. B. H. Youdim, “Targeting multiple neurodegenerative diseases etiologies with multimodal-acting green tea catechins,” Journal of Nutrition, vol. 138, no. 8, pp. 1578S–1583S, 2008. View at Scopus
  148. O. Weinreb, S. Mandel, T. Amit, and M. B. H. Youdim, “Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases,” Journal of Nutritional Biochemistry, vol. 15, no. 9, pp. 506–516, 2004. View at Publisher · View at Google Scholar · View at Scopus
  149. Y. Xu, J.-J. Zhang, L. Xiong, L. Zhang, D. Sun, and H. Liu, “Green tea polyphenols inhibit cognitive impairment induced by chronic cerebral hypoperfusion via modulating oxidative stress,” Journal of Nutritional Biochemistry, vol. 21, no. 8, pp. 741–748, 2010. View at Publisher · View at Google Scholar · View at Scopus
  150. K. Rezai-Zadeh, G. W. Arendash, H. Hou et al., “Green tea epigallocatechin-3-gallate (EGCG) reduces β-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice,” Brain Research, vol. 1214, pp. 177–187, 2008. View at Publisher · View at Google Scholar · View at Scopus
  151. K. Rezai-Zadeh, D. Shytle, N. Sun et al., “Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice,” Journal of Neuroscience, vol. 25, no. 38, pp. 8807–8814, 2005. View at Publisher · View at Google Scholar · View at Scopus
  152. J. Song, H. Xu, F. Liu, and L. Feng, “Tea and cognitive health in late life: current evidence and future directions,” Journal of Nutrition, Health and Aging, vol. 16, no. 1, pp. 31–34, 2012. View at Publisher · View at Google Scholar · View at Scopus
  153. K. J. Anstey, H. A. Mack, and N. Cherbuin, “Alcohol consumption as a risk factor for dementia and cognitive decline: meta-analysis of prospective studies,” American Journal of Geriatric Psychiatry, vol. 17, no. 7, pp. 542–555, 2009. View at Publisher · View at Google Scholar · View at Scopus
  154. F. Panza, C. Capurso, A. D'Introno et al., “Alcohol drinking, cognitive functions in older age, predementia, and dementia syndromes,” Journal of Alzheimer's Disease, vol. 17, no. 1, pp. 7–31, 2009. View at Publisher · View at Google Scholar · View at Scopus
  155. S. Weyerer, M. Schäufele, B. Wiese et al., “Current alcohol consumption and its relationship to incident dementia: results from a 3-year follow-up study among primary care attenders aged 75 years and older,” Age and Ageing, vol. 40, no. 4, pp. 456–463, 2011. View at Publisher · View at Google Scholar · View at Scopus
  156. D. G. Harwood, A. Kalechstein, W. W. Barker et al., “The effect of alcohol and tobacco consumption, and apolipoprotein E genotype, on the age of onset in Alzheimer's disease,” International Journal of Geriatric Psychiatry, vol. 25, no. 5, pp. 511–518, 2010. View at Publisher · View at Google Scholar · View at Scopus
  157. T.-C. Huang, K.-T. Lu, Y.-Y. P. Wo, Y.-J. Wu, and Y.-L. Yang, “Resveratrol protects rats from Aβ-induced neurotoxicity by the reduction of iNOS expression and lipid peroxidation,” PLoS ONE, vol. 6, no. 12, Article ID e29102, 2011. View at Publisher · View at Google Scholar · View at Scopus
  158. S. S. Karuppagounder, J. T. Pinto, H. Xu, H.-L. Chen, M. F. Beal, and G. E. Gibson, “Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer's disease,” Neurochemistry International, vol. 54, no. 2, pp. 111–118, 2009. View at Publisher · View at Google Scholar · View at Scopus
  159. L. Ho, M. G. Ferruzzi, E. M. Janle, et al., “Identification of brain-targeted bioactive dietary quercetin-3-O-glucuronide as a novel intervention for Alzheimer's disease,” The FASEB Journal, vol. 27, no. 2, pp. 769–781, 2013.
  160. M. J. González-Muñoz, A. Peña, and I. Meseguer, “Role of beer as a possible protective factor in preventing Alzheimer's disease,” Food and Chemical Toxicology, vol. 46, no. 1, pp. 49–56, 2008. View at Publisher · View at Google Scholar · View at Scopus
  161. K. Gustaw-Rothenberg, “Dietary patterns associated with alzheimer's disease: population based study,” International Journal of Environmental Research and Public Health, vol. 6, no. 4, pp. 1335–1340, 2009. View at Publisher · View at Google Scholar · View at Scopus
  162. T. T. Fung, M. J. Stampfer, J. E. Manson, K. M. Rexrode, W. C. Willett, and F. B. Hu, “Prospective study of major dietary patterns and stroke risk in women,” Stroke, vol. 35, no. 9, pp. 2014–2019, 2004. View at Publisher · View at Google Scholar · View at Scopus
  163. C. R. Hooijmans, F. Rutters, P. J. Dederen et al., “Changes in cerebral blood volume and amyloid pathology in aged Alzheimer APP/PS1 mice on a docosahexaenoic acid (DHA) diet or cholesterol enriched Typical Western Diet (TWD),” Neurobiology of Disease, vol. 28, no. 1, pp. 16–29, 2007. View at Publisher · View at Google Scholar · View at Scopus
  164. C. M. Studzinski, F. Li, A. J. Bruce-Keller et al., “Effects of short-term Western diet on cerebral oxidative stress and diabetes related factors in APP x PS1 knock-in mice,” Journal of Neurochemistry, vol. 108, no. 4, pp. 860–866, 2009. View at Publisher · View at Google Scholar · View at Scopus
  165. G. J. Hankey, “Nutrition and the risk of stroke,” The Lancet Neurology, vol. 11, no. 1, pp. 66–81, 2012. View at Publisher · View at Google Scholar · View at Scopus
  166. W. H. Birkenhäger, J. A. Staessen, I. P. Casserly et al., “Convergence of atherosclerosis and Alzheimer's disease,” The Lancet, vol. 363, no. 9426, pp. 2091–2092, 2004. View at Scopus
  167. N. Scarmeas, J. A. Luchsinger, R. Mayeux, and Y. Stern, “Mediterranean diet and Alzheimer disease mortality,” Neurology, vol. 69, no. 11, pp. 1084–1093, 2007. View at Publisher · View at Google Scholar · View at Scopus
  168. F. Sofi, R. Abbate, G. F. Gensini, and A. Casini, “Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis,” American Journal of Clinical Nutrition, vol. 92, no. 5, pp. 1189–1196, 2010. View at Publisher · View at Google Scholar · View at Scopus
  169. D. A. Lawlor, G. D. Smith, D. Kundu, K. R. Bruckdorfer, and S. Ebrahim, “Those confounded vitamins: what can we learn from the differences between observational versus randomised trial evidence?” The Lancet, vol. 363, no. 9422, pp. 1724–1727, 2004. View at Publisher · View at Google Scholar · View at Scopus
  170. G. D. Smith, “Reflections on the limitations to epidemiology,” Journal of Clinical Epidemiology, vol. 54, no. 4, pp. 325–331, 2001. View at Publisher · View at Google Scholar · View at Scopus