About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 529087, 7 pages
http://dx.doi.org/10.1155/2013/529087
Clinical Study

Comparison of New Technology Integrated and Nonintegrated Arterial Filters Used in Cardiopulmonary Bypass Surgery: A Randomized, Prospective, and Single Blind Study

1Department of Cardiovascular Surgery, Marmara University Medical Faculty, 34668 Istanbul, Turkey
2Department of Medical Biochemistry, Marmara University Medical Faculty, 34668 Istanbul, Turkey

Received 6 August 2013; Accepted 26 September 2013

Academic Editor: Paul Evans

Copyright © 2013 Özgür Gürsu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. Tagarakis, M. E. Daskalopoulos, and N. B. Tsilimingas, “Avoiding cardiopulmonary bypass does not protect against neuropsychiatric complications in elderly patients,” Interactive Cardiovascular and Thoracic Surgery, vol. 12, no. 3, article 439, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Lorusso, G. de Cicco, P. Totaro, and S. Gelsomino, “Effects of phosphorylcholine coating on extracorporeal circulation management and postoperative outcome: a double-blind randomized study,” Interactive Cardiovascular and Thoracic Surgery, vol. 8, no. 1, pp. 7–11, 2009. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Qiu, S. Peng, A. Kunselman, and A. Ündar, “Evaluation of capiox FX05 oxygenator with an integrated arterial filter on trapping gaseous microemboli and pressure drop with open and closed purge line,” Artificial Organs, vol. 34, no. 11, pp. 1053–1057, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. F. Biancari and R. Rimpiläinen, “Meta-analysis of randomised trials comparing the effectiveness of miniaturised versus conventional cardiopulmonary bypass in adult cardiac surgery,” Heart, vol. 95, no. 12, pp. 964–969, 2009. View at Publisher · View at Google Scholar · View at Scopus
  5. L. H. Edmunds Jr., “Inflammatory response to cardiopulmonary bypass,” Annals of Thoracic Surgery, vol. 66, no. 5, supplement, pp. S12–S16, 1998. View at Publisher · View at Google Scholar · View at Scopus
  6. W. Martin, R. Carter, A. Tweddel et al., “Respiratory dysfunction and white cell activation following cardiopulmonary bypass: comparison of membrane and bubble oxygenators,” European Journal of Cardio-Thoracic Surgery, vol. 10, no. 9, pp. 774–783, 1996. View at Scopus
  7. M. Rothenburger, F. Trösch, A. Markewitz et al., “Leukocyte activation and phagocytotic activity in cardiac surgery and infection,” Cardiovascular Surgery, vol. 10, no. 5, pp. 470–475, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. J. Cremer, M. Martin, H. Redl et al., “Systemic inflammatory response syndrome after cardiac operations,” Annals of Thoracic Surgery, vol. 61, no. 6, pp. 1714–1720, 1996. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Fromes, D. Gaillard, O. Ponzio et al., “Reduction of the inflammatory response following coronary bypass grafting with total minimal extracorporeal circulation,” European Journal of Cardio-Thoracic Surgery, vol. 22, no. 4, pp. 527–533, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Wippermann, J. M. Albes, M. Hartrumpf et al., “Comparison of minimally invasive closed circuit extracorporeal circulation with conventional cardiopulmonary bypass and with off-pump technique in CABG patients: selected parameters of coagulation and inflammatory system,” European Journal of Cardio-Thoracic Surgery, vol. 28, no. 1, pp. 127–132, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. G. J. Myers, K. Gardiner, S. N. Ditmore et al., “Clinical evaluation of the sorin synthesis oxygenator with integrated arterial filter,” Journal of Extra-Corporeal Technology, vol. 37, no. 2, pp. 201–206, 2005. View at Scopus
  12. D. E. Chenoweth, S. W. Cooper, T. E. Hugli, R. W. Stewart, E. H. Blackstone, and J. W. Kirklin, “Complement activation during cardiopulmonary bypass. Evidence for generation of C3a and C5a anaphylatoxins,” The New England Journal of Medicine, vol. 304, no. 9, pp. 497–503, 1981. View at Scopus
  13. D. S. Morse, D. Adams, and B. Magnani, “Platelet and neutrophil activation during cardiac surgical procedures: impact of cardiopulmonary bypass,” Annals of Thoracic Surgery, vol. 65, no. 3, pp. 691–695, 1998. View at Publisher · View at Google Scholar · View at Scopus
  14. P. H. M. Kuijper, H. I. G. Torres, J. W. J. Lammers, J. J. Sixma, L. Koenderman, and J. J. Zwaginga, “Platelet and fibrin deposition at the damaged vessel wall: cooperative substrates for neutrophil adhesion under flow conditions,” Blood, vol. 89, no. 1, pp. 166–175, 1997. View at Scopus
  15. C. S. Rinder, J. L. Bonan, H. M. Rinder, J. Mathew, R. Hines, and B. R. Smith, “Cardiopulmonary bypass induces leukocyte-platelet adhesion,” Blood, vol. 79, no. 5, pp. 1201–1205, 1992. View at Scopus
  16. R. H. Habib, A. Zacharias, T. A. Schwann, C. J. Riordan, S. J. Durham, and A. Shah, “Adverse effects of low hematocrit during, cardiopulmonary bypass in the adult: should current practice be changed?” Journal of Thoracic and Cardiovascular Surgery, vol. 125, no. 6, pp. 1438–1450, 2003. View at Publisher · View at Google Scholar · View at Scopus
  17. W. C. Fang, R. E. Helm, K. H. Krieger et al., “Impact of minimum hematocrit during cardiopulmonary bypass on mortality in patients undergoing coronary artery surgery,” Circulation, vol. 96, no. 9, supplement, pp. II194–II199, 1997. View at Scopus
  18. N. Curtis, H. A. Vohra, and S. K. Ohri, “Mini extracorporeal circuit cardiopulmonary bypass system: a review,” Perfusion, vol. 25, no. 3, pp. 115–124, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. W. B. Gerritsen, W. J. van Boven, R. M. Wesselink et al., “Significant reduction in blood loss in patients undergoing minimal extracorporeal circulation,” Transfusion Medicine, vol. 16, no. 5, pp. 329–334, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. J. P. Remadi, Z. Rakotoarivelo, P. Marticho, and A. Benamar, “Prospective randomized study comparing coronary artery bypass grafting with the new mini-extracorporeal circulation Jostra System or with a standard cardiopulmonary bypass,” The American Heart Journal, vol. 151, no. 1, pp. 198.e1–198.e7, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. M. Stalder, E. Gygax, F. F. Immer, L. Englberger, H. Tevaearai, and T. P. Carrel, “Minimized cardiopulmonary bypass combined with a smart suction device: the future of cardiopulmonary bypass?” The Heart Surgery Forum, vol. 10, no. 3, pp. E235–E238, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. E. E. Ševerdija, J. H. Heijmans, M. Theunissen, J. G. Maessen, P. H. Roekaerts, and P. W. Weerwind, “Retrograde autologous priming reduces transfusion requirements in coronary artery bypass surgery,” Perfusion, vol. 26, no. 4, pp. 315–321, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Ak, S. Isbir, A. Tekeli et al., “Presence of lipoprotein lipase S447X stop codon affects the magnitude of interleukin 8 release after cardiac surgery with cardiopulmonary bypass,” Journal of Thoracic and Cardiovascular Surgery, vol. 134, no. 2, pp. 477–483, 2007. View at Publisher · View at Google Scholar · View at Scopus
  24. B. Delannoy, M. L. Guye, D. H. Slaiman, J. J. Lehot, and M. Cannesson, “Effect of cardiopulmonary bypass on activated partial thromboplastin time waveform analysis, serum procalcitonin and C-reactive protein concentrations,” Critical Care, vol. 13, no. 6, article R180, 2009. View at Scopus
  25. O. Alataş, O. Çolak, B. Büyükkidan, O. Portakal, and B. Tanriverdi, “Soluble interleukin-2 receptor and interleukin-8 plasma levels during and after cardiopulmonary bypass: correlations with creatine kinase and creatine kinase MB,” Clinical and Experimental Medicine, vol. 1, no. 1, pp. 13–18, 2001. View at Scopus