About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 529589, 18 pages
http://dx.doi.org/10.1155/2013/529589
Research Article

Recovery of Fertility in Azoospermia Rats after Injection of Adipose-Tissue-Derived Mesenchymal Stem Cells: The Sperm Generation

1Ankalife IVF and Women Health Centre, Ankara, Turkey
2Stem Cell Department, Institute of Health Sciences, Kocaeli University Center for Stem Cell and Gene Therapies Research and Practice, Izmit, 41380 Kocaeli, Turkey
3Urology Department, Faculty of Medicine, Ufuk University, Ankara, Turkey
4Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
5Pathology Department, Ankara Hospital, Ankara, Turkey

Received 10 October 2012; Revised 6 December 2012; Accepted 9 December 2012

Academic Editor: Thomas Skutella

Copyright © 2013 Cihangir Cakici et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. Y. Lin, B. S. Lee, C. C. Liao, W. J. Cheng, F. M. Chang, and M. H. Chen, “Transdifferentiation of bone marrow stem cells into acinar cells using a double chamber system,” Journal of the Formosan Medical Association, vol. 106, no. 1, pp. 1–7, 2007. View at Scopus
  2. M. Stashower, K. Smith, J. Williams, and H. Skelton, “Stromal progenitor cells present within liposuction and reduction abdominoplasty fat for autologous transfer to aged skin,” Dermatologic Surgery, vol. 25, no. 12, pp. 945–949, 1999. View at Publisher · View at Google Scholar · View at Scopus
  3. Y. C. Halvorsen, W. O. Wilkison, and J. M. Gimble, “Adipose-derived stromal cells—their utility and petential in bone formation,” International Journal of Obesity, vol. 24, no. 4, pp. S41–S44, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. Y. D. C. Halvorsen, D. Franklin, A. L. Bond et al., “Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells,” Tissue Engineering, vol. 7, no. 6, pp. 729–741, 2001. View at Publisher · View at Google Scholar · View at Scopus
  5. Y. D. C. Halvorsen, A. Bond, A. Sen et al., “Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis,” Metabolism: Clinical and Experimental, vol. 50, no. 4, pp. 407–413, 2001. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Gronthos, D. M. Franklin, H. A. Leddy, P. G. Robey, R. W. Storms, and J. M. Gimble, “Surface protein characterization of human adipose tissue-derived stromal cells,” Journal of Cellular Physiology, vol. 189, no. 1, pp. 54–63, 2001. View at Publisher · View at Google Scholar
  7. A. Sen, Y. R. Lea-Currie, D. Sujkowska, et al., “Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous,” Journal of Cellular Biochemistry, vol. 81, no. 2, pp. 312–319, 2001. View at Publisher · View at Google Scholar
  8. P. Wu, K. Sato, S. Yukawa, Y. Hikasa, and K. Kagota, “Differentiation of stromal-vascular cells isolated from canine adipose tissues in primary culture,” Journal of Veterinary Medical Science, vol. 63, no. 1, pp. 17–23, 2001. View at Publisher · View at Google Scholar · View at Scopus
  9. P. A. Zuk, M. Zhu, H. Mizuno et al., “Multilineage cells from human adipose tissue: implications for cell-based therapies,” Tissue Engineering, vol. 7, no. 2, pp. 211–228, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. T. S. Housman, N. Lawrence, B. G. Mellen et al., “The safety of liposuction: results of a national survey,” Dermatologic Surgery, vol. 28, no. 11, pp. 971–978, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Lendeckel, A. Jödicke, P. Christophis et al., “Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report,” Journal of Cranio-Maxillofacial Surgery, vol. 32, no. 6, pp. 370–373, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. B. M. Strem, K. C. Hicok, M. Zhu et al., “Multipotential differentiation of adipose tissue-derived stem cells,” The Keio Journal of Medicine, vol. 54, no. 3, pp. 132–141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. B. Fang, Y. P. Song, L. M. Liao, Q. Han, and R. C. Zhao, “Treatment of severe therapy-resistant acute graft-versus-host disease with human adipose tissue-derived mesenchymal stem cells,” Bone Marrow Transplantation, vol. 38, no. 5, pp. 389–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. T. A. Moseley, M. Zhu, and M. H. Hedrick, “Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery,” Plastic and Reconstructive Surgery, vol. 118, no. 3, pp. 121–128, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Ning, G. Lin, T. F. Lue, and C. S. Lin, “Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells,” Differentiation, vol. 74, no. 9-10, pp. 510–518, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. B. Fang, Y. Song, Q. Lin et al., “Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children,” Pediatric Transplantation, vol. 11, no. 7, pp. 814–817, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Valina, K. Pinkernell, Y. H. Song et al., “Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion, and remodelling after acute myocardial infarction,” European Heart Journal, vol. 28, no. 21, pp. 2667–2677, 2007. View at Publisher · View at Google Scholar · View at Scopus
  18. K. Yoshimura, K. Sato, N. Aoi, M. Kurita, T. Hirohi, and K. Harii, “Cell-assisted lipotransfer for cosmetic breast augmentation: supportive use of adipose-derived stem/stromal cells,” Aesthetic Plastic Surgery, vol. 32, no. 1, pp. 48–55, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. Y. Toyooka, N. Tsunekawa, R. Akasu, and T. Noce, “Embryonic stem cells can form germ cells in vitro,” Proceedings of the National Academy of Sciences of the United States of America, vol. 100, no. 20, pp. 11457–11462, 2003. View at Publisher · View at Google Scholar · View at Scopus
  20. N. Geijsen, M. Horoschak, K. Kim, J. Gribnau, K. Eggan, and G. Q. Daley, “Derivation of embryonic germ cells and male gametes from embryonic stem cells,” Nature, vol. 427, no. 6970, pp. 148–154, 2004. View at Publisher · View at Google Scholar · View at Scopus
  21. J. A. West, I. H. Park, G. Q. Daley, and N. Geijsen, “In vitro generation of germ cells from murine embryonic stem cells,” Nature Protocols, vol. 1, no. 4, pp. 2026–2036, 2006. View at Publisher · View at Google Scholar · View at Scopus
  22. K. Nayernia, M. Li, L. Jaroszynski et al., “Stem cell based therapeutical approach of male infertility by teratocarcinoma derived germ cells,” Human Molecular Genetics, vol. 13, no. 14, pp. 1451–1460, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. K. Nayernia, J. Nolte, H. W. Michelmann et al., “In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice,” Developmental Cell, vol. 11, no. 1, pp. 125–132, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. K. Nayernia, J. H. Lee, N. Drusenheimer et al., “Derivation of male germ cells from bone marrow stem cells,” Laboratory Investigation, vol. 86, no. 7, pp. 654–663, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. N. Drusenheimer, G. Wulf, J. Nolte et al., “Putative human male germ cells from bone marrow stem cells,” Society of Reproduction and Fertility Supplement, vol. 63, pp. 69–76, 2007. View at Scopus
  26. Y. Lue, K. Erkkila, P. Y. Liu et al., “Fate of bone marrow stem cells transplanted into the testis: potential implication for men with testicular failure,” American Journal of Pathology, vol. 170, no. 3, pp. 899–908, 2007. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Kim, M. Seandel, I. Falciatori, D. Wen, and S. Rafii, “CD34+ testicular stromal cells support long-term expansion of embryonic and adult stem and progenitor cells,” Stem Cells, vol. 26, no. 10, pp. 2516–2522, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Hua, P. Qiu, H. Zhu, H. Cao, F. Wang, and W. Li, “Multipotent mesenchymal stem cells (MSCs) from human umbilical cord: potential differentiation of germ cells,” African Journal of Biochemistry Research, vol. 5, no. 4, pp. 113–123, 2011.
  29. M. L. Meistrich and M. Kangasniemi, “Hormone treatment after irradiation stimulates recovery of rat spermatogenesis from surviving spermatogonia,” Journal of Andrology, vol. 18, no. 1, pp. 80–87, 1997. View at Scopus
  30. T. Ogawa, J. M. Aréchaga, M. R. Avarbock, and R. L. Brinster, “Transplantation of testis germinal cells into mouse seminiferous tubules,” International Journal of Developmental Biology, vol. 41, no. 1, pp. 111–122, 1997. View at Scopus
  31. E. Southern, “Southern blotting,” Nature Protocols, vol. 1, no. 2, pp. 518–525, 2006. View at Publisher · View at Google Scholar · View at Scopus
  32. P. A. Zuk, M. Zhu, P. Ashjian et al., “Human adipose tissue is a source of multipotent stem cells,” Molecular Biology of the Cell, vol. 13, no. 12, pp. 4279–4295, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. K. M. Safford, K. C. Hicok, S. D. Safford et al., “Neurogenic differentiation of murine and human adipose-derived stromal cells,” Biochemical and Biophysical Research Communications, vol. 294, no. 2, pp. 371–379, 2002. View at Publisher · View at Google Scholar · View at Scopus
  34. P. H. Ashjian, A. S. Elbarbary, B. Edmonds et al., “In vitro differentiation of human processed lipoaspirate cells into early neural progenitors,” Plastic and Reconstructive Surgery, vol. 111, no. 6, pp. 1922–1931, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. S. K. Kang, D. H. Lee, Y. C. Bae, H. K. Kim, S. Y. Baik, and J. S. Jung, “Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats,” Experimental Neurology, vol. 183, no. 2, pp. 355–366, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. S. S. Tholpady, A. J. Katz, and R. C. Ogle, “Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro,” Anatomical Record Part A, vol. 272, no. 1, pp. 398–402, 2003. View at Scopus
  37. S. K. Kang, L. A. Putnam, J. Ylostalo et al., “Neurogenesis of Rhesus adipose stromal cells,” Journal of Cell Science, vol. 117, no. 18, pp. 4289–4299, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. A. C. Boquest, A. Shahdadfar, K. Frønsdal et al., “Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture,” Molecular Biology of the Cell, vol. 16, no. 3, pp. 1131–1141, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Fujimura, R. Ogawa, H. Mizuno, Y. Fukunaga, and H. Suzuki, “Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice,” Biochemical and Biophysical Research Communications, vol. 333, no. 1, pp. 116–121, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. F. Guilak, K. E. Lott, H. A. Awad et al., “Clonal analysis of the differentiation potential of human adipose-derived adult stem cells,” Journal of Cellular Physiology, vol. 206, no. 1, pp. 229–237, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. S. K. Kang, M. J. Shin, J. S. Jung, Y. G. Kim, and C. H. Kim, “Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury,” Stem Cells and Development, vol. 15, no. 4, pp. 583–594, 2006. View at Publisher · View at Google Scholar · View at Scopus
  42. T. Nagase, D. Matsumoto, M. Nagase et al., “Neurospheres from human adipose tissue transplanted into cultured mouse embryos can contribute to craniofacial morphogenesis: a preliminary report,” Journal of Craniofacial Surgery, vol. 18, no. 1, pp. 49–53, 2007. View at Publisher · View at Google Scholar · View at Scopus
  43. A. T. Clark, M. S. Bodnar, M. Fox et al., “Spontaneous differentiation of germ cells from human embryonic stem cells in vitro,” Human Molecular Genetics, vol. 13, no. 7, pp. 727–739, 2004. View at Publisher · View at Google Scholar · View at Scopus
  44. P. W. Dyce, L. Wen, and J. Li, “In vitro germline potential of stem cells derived from fetal porcine skin,” Nature Cell Biology, vol. 8, no. 4, pp. 384–390, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. O. Lacham-Kaplan, H. Chy, and A. Trounson, “Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes,” Stem Cells, vol. 24, no. 2, pp. 266–273, 2006. View at Publisher · View at Google Scholar · View at Scopus
  46. J. Hua, H. Yu, W. Dong et al., “Characterization of mesenchymal stem cells (MSCs) from human fetal lung: potential differentiation of germ cells,” Tissue and Cell, vol. 41, no. 6, pp. 448–455, 2009. View at Publisher · View at Google Scholar · View at Scopus
  47. T. Yazawa, T. Mizutani, K. Yamada et al., “Differentiation of adult stem cells derived from bone marrow stroma into Leydig or adrenocortical cells,” Endocrinology, vol. 147, no. 9, pp. 4104–4111, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. S. G. Ball, A. C. Shuttleworth, and C. M. Kielty, “Direct cell contact influences bone marrow mesenchymal stem cell fate,” International Journal of Biochemistry and Cell Biology, vol. 36, no. 4, pp. 714–727, 2004. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Koyanagi, R. P. Brandes, J. Haendeler, A. M. Zeiher, and S. Dimmeler, “Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes?” Circulation Research, vol. 96, no. 10, pp. 1039–1041, 2005. View at Publisher · View at Google Scholar · View at Scopus
  50. C. Lange, H. Bruns, D. Kluth, A. R. Zander, and H. C. Fiegel, “Hepatocytic differentiation of mesenchymal stem cells in cocultures with fetal liver cells,” World Journal of Gastroenterology, vol. 12, no. 15, pp. 2394–2397, 2006. View at Scopus
  51. S. M. Richardson, R. V. Walker, S. Parker et al., “Intervertebral disc cell-mediated mesenchymal stem cell differentiation,” Stem Cells, vol. 24, no. 3, pp. 707–716, 2006. View at Publisher · View at Google Scholar · View at Scopus
  52. F. J. Rivera, W. D. Sierralta, J. J. Minguell, and L. Aigner, “Adult hippocampus derived soluble factors induce a neuronal-like phenotype in mesenchymal stem cells,” Neuroscience Letters, vol. 406, no. 1-2, pp. 49–54, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. T. Wang, Z. Xu, W. Jiang, and A. Ma, “Cell-to-cell contact induces mesenchymal stem cell to differentiate into cardiomyocyte and smooth muscle cell,” International Journal of Cardiology, vol. 109, no. 1, pp. 74–81, 2006. View at Publisher · View at Google Scholar · View at Scopus
  54. K. L. Doyle, A. Kazda, Y. Hort, S. M. McKay, and S. Oleskevich, “Differentiation of adult mouse olfactory precursor cells into hair cells in vitro,” Stem Cells, vol. 25, no. 3, pp. 621–627, 2007. View at Publisher · View at Google Scholar · View at Scopus
  55. I. C. Lee, J. H. Wang, Y. T. Lee, and T. H. Young, “The differentiation of mesenchymal stem cells by mechanical stress or/and co-culture system,” Biochemical and Biophysical Research Communications, vol. 352, no. 1, pp. 147–152, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. C. S. Lin, Z. C. Xin, C. H. Deng, H. Ning, G. Lin, and T. F. Lue, “Recent advances in andrology-related stem cell research,” Asian Journal of Andrology, vol. 10, no. 2, pp. 171–175, 2008. View at Publisher · View at Google Scholar · View at Scopus
  57. X. T. Meng, D. Chen, Z. Y. Dong, and J. M. Liu, “Enhanced neural differentiation of neural stem cells and neurite growth by amniotic epithelial cell co-culture,” Cell Biology International, vol. 31, no. 7, pp. 691–698, 2007. View at Publisher · View at Google Scholar · View at Scopus
  58. Y. Yamada, S. I. Yokoyama, N. Fukuda et al., “A novel approach for myocardial regeneration with educated cord blood cells cocultured with cells from brown adipose tissue,” Biochemical and Biophysical Research Communications, vol. 353, no. 1, pp. 182–188, 2007. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Schofield, “The relationship between the spleen colony-forming cell and the haemopoietic stem cell. A hypothesis,” Blood Cells, vol. 4, no. 1-2, pp. 7–25, 1978. View at Scopus
  60. X. Meng, M. Lindahl, M. E. Hyvönen et al., “Regulation of cell fate decision of undifferentiated spermatogonia by GDNF,” Science, vol. 287, no. 5457, pp. 1489–1493, 2000. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Tadokoro, K. Yomogida, H. Ohta, A. Tohda, and Y. Nishimune, “Homeostatic regulation of germinal stem cell proliferation by the GDNF/FSH pathway,” Mechanisms of Development, vol. 113, no. 1, pp. 29–39, 2002. View at Scopus
  62. M. Kanatsu-Shinohara, N. Ogonuki, K. Inoue et al., “Long-term proliferation in culture and germline transmission of mouse male germline stem cells,” Biology of Reproduction, vol. 69, no. 2, pp. 612–616, 2003. View at Publisher · View at Google Scholar · View at Scopus
  63. H. Kubota, M. R. Avarbock, and R. L. Brinster, “Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 47, pp. 16489–16494, 2004. View at Publisher · View at Google Scholar · View at Scopus
  64. K. T. Ebata, J. R. Yeh, X. Zhang, and M. C. Nagano, “Soluble growth factors stimulate spermatogonial stem cell divisions that maintain a stem cell pool and produce progenitors in vitro,” Experimental Cell Research, vol. 317, no. 10, pp. 1319–1329, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. D. Jahner and R. Jaenisch, “Chromosomal position and specific demethylation in enhancer sequences of germ line-transmitted retroviral genomes during mouse development,” Molecular and Cellular Biology, vol. 5, no. 9, pp. 2212–2220, 1985. View at Scopus
  66. A. Z. Rizvi, J. R. Swain, P. S. Davies et al., “Bone marrow-derived cells fuse with normal and transformed intestinal stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 16, pp. 6321–6325, 2006. View at Publisher · View at Google Scholar · View at Scopus
  67. K. Kemp, D. Gordon, D. C. Wraith et al., “Fusion between human mesenchymal stem cells and rodent cerebellar Purkinje cells,” Neuropathology and Applied Neurobiology, vol. 37, no. 2, pp. 166–178, 2011. View at Publisher · View at Google Scholar · View at Scopus
  68. R. Gonzalez, L. Griparic, V. Vargas et al., “A putative mesenchymal stem cells population isolated from adult human testes,” Biochemical and Biophysical Research Communications, vol. 385, no. 4, pp. 570–575, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. D. M. Kristensen, J. E. Nielsen, N. E. Skakkebaek et al., “Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms,” Human Reproduction, vol. 23, no. 4, pp. 775–782, 2008. View at Publisher · View at Google Scholar · View at Scopus