About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 530712, 13 pages
http://dx.doi.org/10.1155/2013/530712
Research Article

Poly(lactic-co-glycolic) Acid/Nanohydroxyapatite Scaffold Containing Chitosan Microspheres with Adrenomedullin Delivery for Modulation Activity of Osteoblasts and Vascular Endothelial Cells

1VIP Integrated Department, School of Stomatology, Jilin University, 1500 Qinghua Road, Changchun 130021, China
2Implant Center, School of Stomatology, Jilin University, Changchun 130021, China
3State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Avenue, Changchun 130022, China

Received 24 February 2013; Revised 7 May 2013; Accepted 17 May 2013

Academic Editor: Andre Van Wijnen

Copyright © 2013 Lin Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. E. Aubin, “Regulation of osteoblast formation and function,” Reviews in Endocrine and Metabolic Disorders, vol. 2, no. 1, pp. 81–94, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. R. A. Jain, “The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices,” Biomaterials, vol. 21, no. 23, pp. 2475–2490, 2000. View at Scopus
  3. R. Dorati, C. Colonna, I. Genta, T. Modena, and B. Conti, “Effect of porogen on the physico-chemical properties and degradation performance of PLGA scaffolds,” Polymer Degradation and Stability, vol. 95, no. 4, pp. 694–701, 2010. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Papavasiliou, C. Ming-Huei, and E. M. Brey, “Strategies for vascularization of polymer scaffolds,” Journal of Investigative Medicine, vol. 58, no. 7, pp. 838–844, 2010. View at Publisher · View at Google Scholar · View at Scopus
  5. J. G. Nemeno-Guanzon, S. Lee, and J. R. Berg, “Trends in tissue engineering for blood vessels,” Journal of Biomedcine and Biotechnology, vol. 2012, Article ID 956345, 14 pages, 2012. View at Publisher · View at Google Scholar
  6. K. Kitamura, K. Kangawa, M. Kawamoto et al., “Adrenomedullin: a novel hypotensive peptide isolated from human pheochromocytoma,” Biochemical and Biophysical Research Communications, vol. 192, no. 2, pp. 553–560, 1993. View at Publisher · View at Google Scholar · View at Scopus
  7. J. P. Hinson, S. Kapas, and D. M. Smith, “Adrenomedullin, a multifunctional regulatory peptide,” Endocrine Reviews, vol. 21, no. 2, pp. 138–167, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. Y. Ichiki, “Distribution and characterization of immunoreactive adrenomedullin in human tissue and plasma,” FEBS Letters, vol. 338, no. 1, pp. 6–10, 1994. View at Publisher · View at Google Scholar · View at Scopus
  9. J. G. Lainchbury, G. J. S. Cooper, D. H. Coy et al., “Adrenomedullin: a hypotensive hormone in man,” Clinical Science, vol. 92, no. 5, pp. 467–472, 1997. View at Scopus
  10. W. K. Samson, T. Murphy, and D. A. Schell, “A novel vasoactive peptide, adrenomedullin, inhibits pituitary adrenocorticotropin release,” Endocrinology, vol. 136, no. 5, pp. 2349–2352, 1995. View at Scopus
  11. F. Yoshihara, S.-I. Suga, N. Yasui et al., “Chronic administration of adrenomedullin attenuates the hypertension and increases renal nitric oxide synthase in Dahl salt-sensitive rats,” Regulatory Peptides, vol. 128, no. 1, pp. 7–13, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Cornish, D. Naot, and I. R. Reid, “Adrenomedullin—a regulator of bone formation,” Regulatory Peptides, vol. 112, no. 1–3, pp. 79–86, 2003. View at Publisher · View at Google Scholar · View at Scopus
  13. D. Ribatti, B. Nico, R. Spinazzi, A. Vacca, and G. G. Nussdorfer, “The role of adrenomedullin in angiogenesis,” Peptides, vol. 26, no. 9, pp. 1670–1675, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. R. P. Allaker and S. Kapas, “Adrenomedullin and mucosal defence: interaction between host and microorganism,” Regulatory Peptides, vol. 112, no. 1–3, pp. 147–152, 2003. View at Publisher · View at Google Scholar · View at Scopus
  15. M. Gröschl, O. Wendler, H.-G. Topf, J. Bohlender, and H. Köhler, “Significance of salivary adrenomedullin in the maintenance of oral health: stimulation of oral cell proliferation and antibacterial properties,” Regulatory Peptides, vol. 154, no. 1–3, pp. 16–22, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. J. Cornish, K. E. Callon, D. H. Coy et al., “Adrenomedullin is a potent stimulator of osteoblastic activity in vitro and in vivo,” American Journal of Physiology, vol. 273, no. 6, pp. E1113–E1120, 1997. View at Scopus
  17. J. Cornish, K. E. Callon, U. Bava et al., “Systemic administration of adrenomedullin(27–52) increases bone volume and strength in male mice,” Journal of Endocrinology, vol. 170, no. 1, pp. 251–257, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. V. P. Michelangeli, A. E. Fletcher, E. H. Allen, G. C. Nicholson, and T. J. Martin, “Effects of calcitonin gene-related peptide on cyclic AMP formation in chicken, rat, and mouse bone cells,” Journal of Bone and Mineral Research, vol. 4, no. 2, pp. 269–272, 1989. View at Scopus
  19. H. Hamada, K. Kitamura, E. Chosa, T. Eto, and N. Tajima, “Adrenomedullin stimulates the growth of cultured normal human osteoblasts as an autocrine/paracine regulator,” Peptides, vol. 23, no. 12, pp. 2163–2168, 2002. View at Publisher · View at Google Scholar · View at Scopus
  20. H.-Q. Mao, K. Roy, V. L. Troung-Le et al., “Chitosan-DNA nanoparticles as gene carriers: synthesis, characterization and transfection efficiency,” Journal of Controlled Release, vol. 70, no. 3, pp. 399–421, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Varshosaz, “The promise of chitosan microspheres in drug delivery systems,” Expert Opinion on Drug Delivery, vol. 4, no. 3, pp. 263–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. K. G. H. Desai and H. J. Park, “Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying,” Journal of Microencapsulation, vol. 22, no. 2, pp. 179–192, 2005. View at Publisher · View at Google Scholar · View at Scopus
  23. S. Tamura, H. Kataoka, Y. Matsui et al., “The effects of transplantation of osteoblastic cells with bone morphogenetic protein (BMP)/carrier complex on bone repair,” Bone, vol. 29, no. 2, pp. 169–175, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. L. Wang, C.-Y. Li, P. He, L. Fu, Y.-M. Zhou, and X.-S. Chen, “Preparation and bioactivities of plga/nano-hydroxyapatite scaffold containing chitosan microspheres for controlled delivery of mutifuncational peptide-adrenomedullin,” Chemical Journal of Chinese Universities, vol. 32, no. 7, pp. 1622–1628, 2011. View at Scopus
  25. Y. X. Wan, X. Cao, Q. Wu, S. Zhang, and W. Sheng, “Preparation and mechanical properties of poly(chitosan-g-DL-lactic acid) fibrous mesh scaffolds,” Polymers for Advanced Technologies, vol. 19, no. 2, pp. 114–123, 2008. View at Publisher · View at Google Scholar · View at Scopus
  26. K. J. Livak and T. D. Schmittgen, “Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method,” Methods, vol. 25, no. 4, pp. 402–408, 2001. View at Publisher · View at Google Scholar · View at Scopus
  27. L. Illum, I. Jabbal-Gill, M. Hinchcliffe, A. N. Fisher, and S. S. Davis, “Chitosan as a novel nasal delivery system for vaccines,” Advanced Drug Delivery Reviews, vol. 51, no. 1–3, pp. 81–96, 2001. View at Publisher · View at Google Scholar · View at Scopus
  28. J. A. Ko, H. J. Park, S. J. Hwang, J. B. Park, and J. S. Lee, “Preparation and characterization of chitosan microparticles intended for controlled drug delivery,” International Journal of Pharmaceutics, vol. 249, no. 1-2, pp. 165–174, 2002. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Mobini, J. Javadpour, M. Hosseinalipour, M. Ghazi-Khansari, A. Khavandi, and H. R. Rezaie, “Synthesis and characterisation of gelatin-nano hydroxyapatite composite scaffolds for bone tissue engineering,” Advances in Applied Ceramics, vol. 107, no. 1, pp. 4–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. A. H. Touny, C. Laurencin, L. Nair, H. Allcock, and P. W. Brown, “Formation of composites comprised of calcium deficient HAp and cross-linked gelatin,” Journal of Materials Science, vol. 19, no. 10, pp. 3193–3201, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. W. Zeng, J. Huang, X. Hu et al., “Ionically cross-linked chitosan microspheres for controlled release of bioactive nerve growth factor,” International Journal of Pharmaceutics, vol. 421, no. 2, pp. 283–290, 2011. View at Publisher · View at Google Scholar · View at Scopus
  32. X. Z. Shu and K. J. Zhu, “Controlled drug release properties of ionically cross-linked chitosan beads: the influence of anion structure,” International Journal of Pharmaceutics, vol. 233, no. 1-2, pp. 217–225, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. K. G. H. Desai and H. J. Park, “Preparation of cross-linked chitosan microspheres by spray drying: effect of cross-linking agent on the properties of spray dried microspheres,” Journal of Microencapsulation, vol. 22, no. 4, pp. 377–395, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. C. Mandoli, B. Mecheri, G. Forte et al., “Thick soft tissue reconstruction on highly perfusive biodegradable scaffolds,” Macromolecular Bioscience, vol. 10, no. 2, pp. 127–138, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. F. J. O'Brien, B. A. Harley, I. V. Yannas, and L. J. Gibson, “The effect of pore size on cell adhesion in collagen-GAG scaffolds,” Biomaterials, vol. 26, no. 4, pp. 433–441, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. J. A. Jansen, J. W. M. Vehof, P. Q. Ruhé et al., “Growth factor-loaded scaffolds for bone engineering,” Journal of Controlled Release, vol. 101, no. 1–3, pp. 127–136, 2005. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman, and A. S. G. Curtis, “Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time,” Biomaterials, vol. 24, no. 6, pp. 927–935, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. Y. Wan, Y. Wang, Z. Liu et al., “Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide),” Biomaterials, vol. 26, no. 21, pp. 4453–4459, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. X. Niu, Q. Feng, M. Wang, X. Guo, and Q. Zheng, “Porous nano-HA/collagen/PLLA scaffold containing chitosan microspheres for controlled delivery of synthetic peptide derived from BMP-2,” Journal of Controlled Release, vol. 134, no. 2, pp. 111–117, 2009. View at Publisher · View at Google Scholar · View at Scopus
  40. W. Huang, X. Shi, L. Ren, C. Du, and Y. Wang, “PHBV microspheres—PLGA matrix composite scaffold for bone tissue engineering,” Biomaterials, vol. 31, no. 15, pp. 4278–4285, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. K. M. Kulig and J. P. Vacanti, “Hepatic tissue engineering,” Transplant Immunology, vol. 12, no. 3-4, pp. 303–310, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” Biomaterials, vol. 21, no. 24, pp. 2529–2543, 2000. View at Scopus
  43. Y. X. Huang, J. Ren, C. Chen, T. B. Ren, and X. Y. Zhou, “Preparation and properties of poly(lactide-co-glycolide) (PLGA)/ Nano-Hydroxyapatite (NHA) scaffolds by thermally induced phase separation and rabbit MSCs culture on scaffolds,” Journal of Biomaterials Applications, vol. 22, no. 5, pp. 409–432, 2008. View at Publisher · View at Google Scholar · View at Scopus
  44. Y. Gong, Q. Zhou, C. Gao, and J. Shen, “in vitro and in vivo degradability and cytocompatibility of poly(l-lactic acid) scaffold fabricated by a gelatin particle leaching method,” Acta Biomaterialia, vol. 3, no. 4, pp. 531–540, 2007. View at Publisher · View at Google Scholar · View at Scopus
  45. L. Wu and J. Ding, “in vitro degradation of three-dimensional porous poly(D,L-lactide-co- glycolide) scaffolds for tissue engineering,” Biomaterials, vol. 25, no. 27, pp. 5821–5830, 2004. View at Publisher · View at Google Scholar · View at Scopus
  46. L. Lu, S. J. Peter, M. D. Lyman et al., “in vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams,” Biomaterials, vol. 21, no. 18, pp. 1837–1845, 2000. View at Publisher · View at Google Scholar · View at Scopus
  47. J. M. Oliveira, M. T. Rodrigues, S. S. Silva et al., “Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells,” Biomaterials, vol. 27, no. 36, pp. 6123–6137, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. M. J. Kim, J.-H. Kim, G. Yi, S.-H. Lim, Y. S. Hong, and D. J. Chung, “in vitro and in vivo application of PLGA nanofiber for artificial blood vessel,” Macromolecular Research, vol. 16, no. 4, pp. 345–352, 2008. View at Scopus
  49. T. R. Arnett, “Extracellular pH regulates bone cell function,” Journal of Nutrition, vol. 128, no. 2, pp. S415–S418, 2008. View at Scopus
  50. Z. S. Al-Aql, A. S. Alagl, D. T. Graves, L. C. Gerstenfeld, and T. A. Einhorn, “Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis,” Journal of Dental Research, vol. 87, no. 2, pp. 107–118, 2008. View at Publisher · View at Google Scholar · View at Scopus
  51. H. Bahar, D. Benayahu, A. Yaffe, and I. Binderman, “Molecular signaling in bone regeneration,” Critical Reviews in Eukaryotic Gene Expression, vol. 17, no. 2, pp. 87–101, 2007. View at Scopus
  52. C. H. Damsky, “Extracellular matrix-integrin interactions in osteoblast function and tissue remodeling,” Bone, vol. 25, no. 1, pp. 95–96, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. S. F. El-Amin, H. H. Lu, Y. Khan et al., “Extracellular matrix production by human osteoblasts cultured on biodegradable polymers applicable for tissue engineering,” Biomaterials, vol. 24, no. 7, pp. 1213–1221, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Sila-Asna, A. Bunyaratvej, S. Maeda, H. Kitaguchi, and N. Bunyaratavej, “Osteoblast differentiation and bone formation gene expression in strontium-inducing bone marrow mesenchymal stem cell,” Kobe Journal of Medical Sciences, vol. 53, no. 1, pp. 25–35, 2007. View at Scopus
  55. K. K. Frick, J. Li, and D. A. Bushinsky, “Acute metabolic acidosis inhibits the induction of osteoblastic egr-1 and type 1 collagen,” American Journal of Physiology, vol. 272, no. 5, pp. C1450–C1456, 1997. View at Scopus
  56. P. Ducy, R. Zhang, V. Geoffroy, A. L. Ridall, and G. Karsenty, “Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation,” Cell, vol. 89, no. 5, pp. 747–754, 1997. View at Scopus
  57. J. H. Jonason, G. Xiao, M. Zhang, L. Xing, and D. Chen, “Post-translational regulation of Runx2 in bone and cartilage,” Journal of Dental Research, vol. 88, no. 8, pp. 693–703, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. S. H. H. Hong, X. Lu, M. S. Nanes, and J. Mitchell, “Regulation of osterix (Osx, Sp7) and the Osx promoter by parathyroid hormone in osteoblasts,” Journal of Molecular Endocrinology, vol. 43, no. 5, pp. 197–207, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. R. Binétruy-Tournaire, C. Demangel, B. Malavaud et al., “Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis,” EMBO Journal, vol. 19, no. 7, pp. 1525–1533, 2000. View at Scopus
  60. D. Guidolin, G. Albertin, R. Spinazzi et al., “Adrenomedullin stimulates angiogenic response in cultured human vascular endothelial cells: involvement of the vascular endothelial growth factor receptor 2,” Peptides, vol. 29, no. 11, pp. 2013–2023, 2008. View at Publisher · View at Google Scholar · View at Scopus
  61. T. Shindo, Y. Kurihara, H. Nishimatsu et al., “Vascular abnormalities and elevated blood pressure in mice lacking adrenomedullin gene,” Circulation, vol. 104, no. 16, pp. 1964–1971, 2001. View at Scopus
  62. M. Garayoa, A. Martínez, S. Lee et al., “Hypoxia-inducible factor-1 (HIF-1) up-regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis,” Molecular Endocrinology, vol. 14, no. 6, pp. 848–862, 2000. View at Publisher · View at Google Scholar · View at Scopus
  63. N. Schwarz, D. Renshaw, S. Kapas, and J. P. Hinson, “Adrenomedullin increases the expression of calcitonin-like receptor and receptor activity modifying protein 2 mRNA in human microvascular endothelial cells,” Journal of Endocrinology, vol. 190, no. 2, pp. 505–514, 2006. View at Publisher · View at Google Scholar · View at Scopus
  64. T. Maki, M. Ihara, Y. Fujita et al., “Angiogenic roles of adrenomedullin through vascular endothelial growth factor induction,” NeuroReport, vol. 22, no. 9, pp. 442–447, 2011. View at Publisher · View at Google Scholar · View at Scopus
  65. S. Fernandez-Sauze, C. Delfino, K. Mabrouk et al., “Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors,” International Journal of Cancer, vol. 108, no. 6, pp. 797–804, 2004. View at Publisher · View at Google Scholar · View at Scopus