About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 531579, 7 pages
http://dx.doi.org/10.1155/2013/531579
Review Article

Does the Adult Human Ciliary Body Epithelium Contain “True” Retinal Stem Cells?

1Department of Ophthalmology, Oslo University Hospital, Pb 4950 Nydalen, 0407 Oslo, Norway
2Department of Ophthalmology, Faculty of Medicine, University of Szeged, Korányi fasor 10-11, Szeged 6720, Hungary
3Stem Cells and Eye Research Laboratory, Department of Biochemistry and Molecular Biology, Medical and Health Science Center and Apoptosis and Genomics Research Group of the Hungarian Academy of Sciences, University of Debrecen, Nagyerdei krt. 98, Debrecen 4032, Hungary

Received 3 July 2013; Revised 26 August 2013; Accepted 31 August 2013

Academic Editor: Daniel Petrovič

Copyright © 2013 Rebecca Frøen et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. C. M. Ramsden, M. B. Powner, A. J. Carr, M. J. Smart, L. da Cruz, and P. J. Coffey, “Stem cells in retinal regeneration: past, present and future,” Development, vol. 140, pp. 2576–2585, 2013. View at Publisher · View at Google Scholar
  2. H. Skottman, S. Narkilahti, and O. Hovatta, “Challenges and approaches to the culture of pluripotent human embryonic stem cells,” Regenerative Medicine, vol. 2, no. 3, pp. 265–273, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. F. Osakada, Y. Hirami, and M. Takahashi, “Stem cell biology and cell transplantation therapy in the retina,” Biotechnology and Genetic Engineering Reviews, vol. 26, pp. 297–334, 2009. View at Scopus
  4. S. G. Wohl, C. W. Schmeer, and S. Isenmann, “Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye,” Progress in Retinal and Eye Research, vol. 31, no. 3, pp. 213–242, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. C. Y. Liu, U. Westerlund, M. Svensson et al., “Artificial niches for human adult neural stem cells: possibility for autologous transplantation therapy,” Journal of Hematotherapy and Stem Cell Research, vol. 12, no. 6, pp. 689–699, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Ramon y Cajal, Degeneration and Regeneration of the Nervous System, translated by R. M. Day from the 1913 Spanish edition, 1913.
  7. B. Bhatia, H. Jayaram, S. Singhal, M. F. Jones, and G. A. Limb, “Differences between the neurogenic and proliferative abilities of Müller glia with stem cell characteristics and the ciliary epithelium from the adult human eye,” Experimental Eye Research, vol. 93, no. 6, pp. 852–861, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. B. Bhatia, S. Singhal, H. Jayaram, P. T. Khaw, and G. A. Limb, “Adult retinal stem cells revisited,” Open Journal of Ophthalmology, vol. 4, pp. 30–38, 2010.
  9. B. Bhatia, S. Singhal, J. M. Lawrence, P. T. Khaw, and G. A. Limb, “Distribution of Müller stem cells within the neural retina: evidence for the existence of a ciliary margin-like zone in the adult human eye,” Experimental Eye Research, vol. 89, no. 3, pp. 373–382, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. J. M. Lawrence, S. Singhal, B. Bhatia et al., “MIO-M1 cells and similar Müller glial cell lines derived from adult human retina exhibit neural stem cell characteristics,” Stem Cells, vol. 25, no. 8, pp. 2033–2043, 2007. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Salero, T. A. Blenkinsop, B. Corneo et al., “Adult human RPE can be activated into a multipotent stem cell that produces mesenchymal derivatives,” Cell Stem Cell, vol. 10, no. 1, pp. 88–95, 2012. View at Publisher · View at Google Scholar · View at Scopus
  12. D. Lamba, M. Karl, and T. Reh, “Neural regeneration and cell replacement: a view from the eye,” Cell Stem Cell, vol. 2, no. 6, pp. 538–549, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. M. Perron and W. A. Harris, “Retinal stem cells in vertebrates,” Bioessays, vol. 22, no. 8, pp. 685–688, 2000. View at Publisher · View at Google Scholar
  14. I. Ahmad, L. Tang, and H. Pham, “Identification of neural progenitors in the adult mammalian eye,” Biochemical and Biophysical Research Communications, vol. 270, no. 2, pp. 517–521, 2000. View at Publisher · View at Google Scholar · View at Scopus
  15. V. Tropepe, B. L. K. Coles, B. J. Chiasson et al., “Retinal stem cells in the adult mammalian eye,” Science, vol. 287, no. 5460, pp. 2032–2036, 2000. View at Publisher · View at Google Scholar · View at Scopus
  16. F. H. Gage, “Mammalian neural stem cells,” Science, vol. 287, no. 5457, pp. 1433–1438, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. L. P. Deleyrolle and B. A. Reynolds, “Isolation, expansion, and differentiation of adult mammalian neural stem and progenitor cells using the neurosphere assay,” Methods in Molecular Biology, vol. 549, pp. 91–101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. B. A. Reynolds and S. Weiss, “Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system,” Science, vol. 255, no. 5052, pp. 1707–1710, 1992. View at Scopus
  19. J. B. Jensen and M. Parmar, “Strengths and limitations of the neurosphere culture system,” Molecular Neurobiology, vol. 34, no. 3, pp. 153–161, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. Y. Arsenijevic, J. Villemure, J. Brunet et al., “Isolation of multipotent neural precursors residing in the cortex of the adult human brain,” Experimental Neurology, vol. 170, no. 1, pp. 48–62, 2001. View at Publisher · View at Google Scholar · View at Scopus
  21. V. G. Kukekov, E. D. Laywell, O. Suslov et al., “Multipotent stem/progenitor cells with similar properties arise from neurogenic regions of adult human brain,” Experimental Neurology, vol. 156, no. 2, pp. 333–344, 1999. View at Publisher · View at Google Scholar · View at Scopus
  22. E. D. Laywell, P. Rakic, V. G. Kukekov, E. C. Holland, and D. A. Steindler, “Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 25, pp. 13883–13888, 2000. View at Publisher · View at Google Scholar · View at Scopus
  23. D. T. Scadden, “The stem-cell niche as an entity of action,” Nature, vol. 441, no. 7097, pp. 1075–1079, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Kohno, Y. Ikeda, Y. Yonemitsu et al., “Sphere formation of ocular epithelial cells in the ciliary body is a reprogramming system for neural differentiation,” Brain Research, vol. 1093, no. 1, pp. 54–70, 2006. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Singec, R. Knoth, R. P. Meyer et al., “Defining the actual sensitivity and specificity of the neurosphere assay in stem cell biology,” Nature Methods, vol. 3, no. 10, pp. 801–806, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. S. A. Cicero, D. Johnson, S. Reyntjens et al., “Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 16, pp. 6685–6690, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. B. L. K. Coles, B. Angénieux, T. Inoue et al., “Facile isolation and the characterization of human retinal stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 44, pp. 15772–15777, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. E. J. Mayer, D. A. Carter, Y. Ren et al., “Neural progenitor cells from postmortem adult human retina,” The British Journal of Ophthalmology, vol. 89, no. 1, pp. 102–106, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. D. A. Carter, E. J. Mayer, and A. D. Dick, “The effect of postmortem time, donor age and sex on the generation of neurospheres from adult human retina,” The British Journal of Ophthalmology, vol. 91, no. 9, pp. 1216–1218, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. H. Xu, D. D. Sta Iglesia, J. L. Kielczewski et al., “Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes,” Investigative Ophthalmology and Visual Science, vol. 48, no. 4, pp. 1674–1682, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. T. A. Reh, “Neural stem cells: form and function,” Nature Neuroscience, vol. 5, no. 5, pp. 392–394, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. R. C. Frøen, E. O. Johnsen, G. Petrovski et al., “Pigment epithelial cells isolated from human peripheral iridectomies have limited properties of retinal stem cells,” Acta Ophthalmologica, vol. 89, no. 8, pp. e635–e644, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. E. O. Johnsen, R. C. Frøen, R. Albert et al., “Activation of neural progenitor cells in human eyes with proliferative vitreoretinopathy,” Experimental Eye Research, vol. 98, no. 1, pp. 28–36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. M. C. Moe, R. S. Kolberg, C. Sandberg et al., “A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain,” Experimental Eye Research, vol. 88, no. 1, pp. 30–38, 2009. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Gualdoni, M. Baron, J. Lakowski et al., “Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors,” Stem Cells, vol. 28, no. 6, pp. 1048–1059, 2010. View at Publisher · View at Google Scholar · View at Scopus
  36. B. G. Ballios, L. Clarke, B. L. Coles, M. S. Shoichet, and D. van der Kooy, “The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors,” Biology Open, vol. 1, pp. 237–246, 2012. View at Publisher · View at Google Scholar
  37. A. V. Das, J. James, J. Rahnenführer et al., “Retinal properties and potential of the adult mammalian ciliary epithelium stem cells,” Vision Research, vol. 45, no. 13, pp. 1653–1666, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. A. MacNeil, R. A. Pearson, R. E. MacLaren, A. J. Smith, J. C. Sowden, and R. R. Ali, “Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye,” Stem Cells, vol. 25, no. 10, pp. 2430–2438, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. M. C. Moe, M. Varghese, A. I. Danilov et al., “Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons,” Brain, vol. 128, no. 9, pp. 2189–2199, 2005. View at Publisher · View at Google Scholar · View at Scopus
  40. T. Inoue, B. L. K. Coles, K. I. M. Dorval et al., “Maximizing functional photoreceptor differentiation from adult human retinal stem cells,” Stem Cells, vol. 28, no. 3, pp. 489–500, 2010. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Jasty, P. Srinivasan, G. Pasricha, N. Chatterjee, and K. Subramanian, “Gene expression profiles and retinal potential of stem/progenitor cells derived from human iris and ciliary pigment epithelium,” Stem Cell Reviews, vol. 8, no. 4, pp. 1163–1177, 2012. View at Publisher · View at Google Scholar
  42. Y. Ducournau, C. Boscher, R. A. Adelman et al., “Proliferation of the ciliary epithelium with retinal neuronal and photoreceptor cell differentiation in human eyes with retinal detachment and proliferative vitreoretinopathy,” Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 250, no. 3, pp. 409–423, 2012. View at Publisher · View at Google Scholar
  43. M. Tomita, Y. Adachi, H. Yamada et al., “Bone marrow-derived stem cells can differentiate into retinal cells in injured rat retina,” Stem Cells, vol. 20, no. 4, pp. 279–283, 2002. View at Scopus
  44. C. Boscher, Y. Ducournau, R. A. Adelman, C. Guillaubey, and D. Ducournau, “Retinal progenitor cells contingents in the adult human eye with retinal injury: a specific differentiation potential according to the localization?” Experimental Eye Research, vol. 105, pp. 79–80, 2012. View at Publisher · View at Google Scholar