About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 534817, 10 pages
http://dx.doi.org/10.1155/2013/534817
Research Article

Angiotensin II AT 1 Receptors Are Involved in Neuronal Activation Induced by Amphetamine in a Two-Injection Protocol

Departamento de Farmacología, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, Instituto de Farmacología Experimental Córdoba (IFEC-CONICET), 5000 Córdoba, Argentina

Received 3 April 2013; Revised 14 June 2013; Accepted 18 June 2013

Academic Editor: Zuoxin Wang

Copyright © 2013 Maria Constanza Paz et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. C. Pierce and P. W. Kalivas, “A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants,” Brain Research Reviews, vol. 25, no. 2, pp. 192–216, 1997. View at Publisher · View at Google Scholar · View at Scopus
  2. T. E. Robinson and B. Kolb, “Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine,” Journal of Neuroscience, vol. 17, no. 21, pp. 8491–8497, 1997. View at Scopus
  3. L. J. M. J. Vanderschuren and P. W. Kalivas, “Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies,” Psychopharmacology, vol. 151, no. 2-3, pp. 99–120, 2000. View at Scopus
  4. L. J. M. J. Vanderschuren, E. Donné Schmidt, T. J. De Vries, C. A. P. Van Moorsel, F. J. H. Tilders, and A. N. M. Schoffelmeer, “A single exposure to amphetamine is sufficient to induce long-term behavioral, neuroendocrine, and neurochemical sensitization in rats,” Journal of Neuroscience, vol. 19, no. 21, pp. 9579–9586, 1999. View at Scopus
  5. E. Valjent, J. Bertran-Gonzalez, B. Aubier, P. Greengard, D. Hervé, and J.-A. Girault, “Mechanisms of locomotor sensitization to drugs of abuse in a two-injection protocol,” Neuropsychopharmacology, vol. 35, no. 2, pp. 401–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. M. C. Paz, M. A. Assis, R. J. Cabrera, L. M. Cancela, and C. Bregonzio, “The AT1 angiotensin II receptor blockade attenuates the development of amphetamine-induced behavioral sensitization in a two-injection protocol,” Synapse, vol. 65, no. 6, pp. 505–512, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. L. J. M. J. Vanderschuren, A. N. M. Schoffelmeer, S. D. C. Van Leeuwen, L. Hof, A. J. Jonker, and P. Voorn, “Compartment-specific changes in striatal neuronal activity during expression of amphetamine sensitization are the result of drug hypersensitivity,” European Journal of Neuroscience, vol. 16, no. 12, pp. 2462–2468, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. D. C. Brown, L. J. Steward, J. Ge, and N. M. Barnes, “Ability of angiotensin II to modulate striatal dopamine release via the AT1 receptor in vitro and in vivo,” British Journal of Pharmacology, vol. 118, no. 2, pp. 414–420, 1996. View at Scopus
  9. J. Tchekalarova, E. Sotiriou, V. Georgiev, G. Kostopoulos, and F. Angelatou, “Up-regulation of adenosine A1 receptor binding in pentylenetetrazol kindling in mice: effects of angiotensin IV,” Brain Research, vol. 1032, no. 1-2, pp. 94–103, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. J. Tchekalarova and V. Georgiev, “Angiotensin peptides modulatory system: how is it implicated in the control of seizure susceptibility?” Life Sciences, vol. 76, no. 9, pp. 955–970, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. D. L. Daubert, G. G. Meadows, J. H. Wang, P. J. Sanchez, and R. C. Speth, “Changes in angiotensin II receptors in dopamine-rich regions of the mouse brain with age and ethanol consumption,” Brain Research, vol. 816, no. 1, pp. 8–16, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. F. J. White and P. W. Kalivas, “Neuroadaptations involved in amphetamine and cocaine addiction,” Drug and Alcohol Dependence, vol. 51, no. 1-2, pp. 141–153, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. M. F. Roitman, E. Na, G. Anderson, T. A. Jones, and I. L. Bernstein, “Induction of a salt appetite alters dendritic morphology in nucleus accumbens and sensitizes rats to amphetamine,” The Journal of Neuroscience, vol. 22, no. 11, article RC225, 2002. View at Scopus
  14. J. J. Clark and I. L. Bernstein, “Reciprocal cross-sensitization between amphetamine and salt appetite,” Pharmacology Biochemistry and Behavior, vol. 78, no. 4, pp. 691–698, 2004. View at Publisher · View at Google Scholar · View at Scopus
  15. D. Rotllant, C. Márquez, R. Nadal, and A. Armario, “The brain pattern of c-fos induction by two doses of amphetamine suggests different brain processing pathways and minor contribution of behavioural traits,” Neuroscience, vol. 168, no. 3, pp. 691–705, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Badiani and T. E. Robinson, “Drug-induced neurobehavioral plasticity: the role of environmental context,” Behavioural Pharmacology, vol. 15, no. 5-6, pp. 327–339, 2004. View at Scopus
  17. J. I. Morgan and T. Curran, “Stimulus-transcription coupling in neurons: role of cellular immediate-early genes,” Trends in Neurosciences, vol. 12, no. 11, pp. 459–462, 1989. View at Scopus
  18. R. E. Nordquist, L. J. M. J. Vanderschuren, A. J. Jonker et al., “Expression of amphetamine sensitization is associated with recruitment of a reactive neuronal population in the nucleus accumbens core,” Psychopharmacology, vol. 198, no. 1, pp. 113–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. L. F. Franchini and L. Vivas, “Distribution of Fos immunoreactivity in rat brain after sodium consumption induced by peritoneal dialysis,” American Journal of Physiology. Regulatory Integrative and Comparative Physiology, vol. 276, no. 4, pp. R1180–R1187, 1999. View at Scopus
  20. L. F. Franchini, A. K. Johnson, J. De Olmos, and L. Vivas, “Sodium appetite and Fos activation in serotonergic neurons,” American Journal of Physiology. Regulatory Integrative and Comparative Physiology, vol. 282, no. 1, pp. R235–R243, 2002. View at Scopus
  21. G. Paxinos, The Rat Brain in Stereotaxic Coordinates, Elsevier, Oxford, 2009.
  22. B. Xue, Z. Zhang, R. F. Johnson, and A. K. Johnson, “Sensitization of slow pressor angiotensin II (Ang II)-initiated hypertension: induction of sensitization by prior Ang II treatment,” Hypertension, vol. 59, no. 2, pp. 459–466, 2012. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. Acerbo and A. K. Johnson, “Behavioral cross-sensitization between DOCA-induced sodium appetite and cocaine-induced locomotor behavior,” Pharmacology Biochemistry and Behavior, vol. 98, no. 3, pp. 440–448, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Moellenhoff, A. Blume, J. Culman et al., “Effect of repetitive icv injections of ANG II on c-Fos and AT1-receptor expression in the rat brain,” American Journal of Physiology. Regulatory Integrative and Comparative Physiology, vol. 280, no. 4, pp. R1095–R1104, 2001. View at Scopus
  25. A. C. Voorhies and I. L. Bernstein, “Induction and expression of salt appetite: effects on Fos expression in nucleus accumbens,” Behavioural Brain Research, vol. 172, no. 1, pp. 90–96, 2006. View at Publisher · View at Google Scholar · View at Scopus
  26. G. Simonnet and M. F. Giorguieff-Chesselet, “Stimulating effect of angiotensin II on the spontaneous release of newly synthesized [3H]dopamine in rat striatal slices,” Neuroscience Letters, vol. 15, no. 2-3, pp. 153–158, 1979. View at Scopus
  27. G. Simonnet, M. F. Giorguieff-Chesselet, and A. Carayon, “Angiotensin II and nigrostriatal system,” Journal de Physiologie, vol. 77, no. 1, pp. 71–79, 1981. View at Scopus
  28. P. W. Kalivas and J. Stewart, “Dopamine transmission in the initiation and expression of drug- and stress-induced sensitization of motor activity,” Brain Research Reviews, vol. 16, no. 3, pp. 223–244, 1991. View at Publisher · View at Google Scholar · View at Scopus
  29. L. J. M. J. Vanderschuren, T. J. De Vries, G. Wardeh, F. A. C. M. Hogenboom, and A. N. M. Schoffelmeer, “A single exposure to morphine induces long-lasting behavioural and neurochemical sensitization in rats,” European Journal of Neuroscience, vol. 14, no. 9, pp. 1533–1538, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. T. E. Robinson, P. A. Jurson, J. A. Bennett, and K. M. Bentgen, “Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by prior experience with (+)-amphetamine: a microdialysis study in freely moving rats,” Brain Research, vol. 462, no. 2, pp. 211–222, 1988. View at Scopus
  31. V. Georgiev, S. Stancheva, T. Kambourova, and D. Getova, “Effect of angiotensin II on the vogel conflict paradigm and on the content of dopamine and noradrenaline in rat brain,” Acta Physiologica et Pharmacologica Bulgarica, vol. 16, no. 1, pp. 32–37, 1990. View at Scopus
  32. M. S. Todtenkopf, A. Mihalakopoulos, and J. R. Stellar, “Withdrawal duration differentially affects c-fos expression in the medial prefrontal cortex and discrete subregions of the nucleus accumbens in cocaine-sensitized rats,” Neuroscience, vol. 114, no. 4, pp. 1061–1069, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. A. M. Pacchioni, M. Cador, C. Bregonzio, and L. M. Cancela, “A glutamate-dopamine interaction in the persistent enhanced response to amphetamine in nucleus accumbens core but not shell following a single restraint stress,” Neuropsychopharmacology, vol. 32, no. 3, pp. 682–692, 2007. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Armando, S. Volpi, G. Aguilera, and J. M. Saavedra, “Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress,” Brain Research, vol. 1142, no. 1, pp. 92–99, 2007. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Bregonzio, A. Seltzer, I. Armando, J. Pavel, and J. M. Saavedra, “Angiotensin II AT1 receptor blockade selectively enhances brain AT2 receptor expression, and abolishes the cold-restraint stress-induced increase in tyrosine hydroxylase mRNA in the locus coeruleus of spontaneously hypertensive rats,” Stress, vol. 11, pp. 457–466, 2008. View at Publisher · View at Google Scholar
  36. J. M. Saavedra, H. Ando, I. Armando et al., “Brain angiotensin II, an important stress hormone: regulatory sites and therapeutic opportunities,” Annals of the New York Academy of Sciences, vol. 1018, pp. 76–84, 2004. View at Publisher · View at Google Scholar · View at Scopus
  37. J. M. Saavedra, H. Ando, I. Armando et al., “Anti-stress and anti-anxiety effects of centrally acting angiotensin II AT1 receptor antagonists,” Regulatory Peptides, vol. 128, no. 3, pp. 227–238, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. J. M. Saavedra, I. Armando, C. Bregonzio et al., “A centrally acting, anxiolytic angiotensin II AT1 receptor antagonist prevents the isolation stress-induced decrease in cortical CRF 1 receptor and benzodiazepine binding,” Neuropsychopharmacology, vol. 31, no. 6, pp. 1123–1134, 2006. View at Publisher · View at Google Scholar · View at Scopus
  39. L. I. Perrotti, C. A. Bolaños, K.-H. Choi et al., “ΔFosB accumulates in a GABAergic cell population in the posterior tail of the ventral tegmental area after psychostimulant treatment,” European Journal of Neuroscience, vol. 21, no. 10, pp. 2817–2824, 2005. View at Publisher · View at Google Scholar · View at Scopus