About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 538940, 9 pages
http://dx.doi.org/10.1155/2013/538940
Research Article

Essential Oil of Common Sage (Salvia officinalis L.) from Jordan: Assessment of Safety in Mammalian Cells and Its Antifungal and Anti-Inflammatory Potential

1Department of Basic and Applied Sciences, Shouback University College, Al-Balqa Applied University, Al-Shouback 71911, Jordan
2Center for Pharmaceutical Studies/Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Universidade de Coimbra, 3000-548 Coimbra, Portugal
3Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-295 Coimbra, Portugal
4Faculdade de Farmácia, Universidade de Coimbra, 3000-295 Coimbra, Portugal
5Department of Agricultural Sciences, Shouback University College, Al-Balqa Applied University, Al-Shouback 71911, Jordan
6Laboratório de Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal

Received 30 April 2013; Revised 4 September 2013; Accepted 5 September 2013

Academic Editor: Marija Mostarica-Stojković

Copyright © 2013 M. S. Abu-Darwish et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Salvia officinalis L. (Lamiaceae) is a Mediterranean species, naturalized in many countries. In Jordan, it is used in traditional medicine as antiseptic, antiscabies, antisyphilitic, and anti-inflammatory, being frequently used against skin diseases. This study aimed the assessment of the antifungal and anti-inflammatory potential of its essential oils, and their cytotoxicity on macrophages and keratinocytes. The oils were investigated by gas chromatography and gas chromatography-mass spectrometry and the antifungal activity was evaluated against yeasts, dermatophyte and Aspergillus strains. Assessment of cell viability was made by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and the in vitro anti-inflammatory potential was evaluated by measuring nitric oxide production using lipopolysaccharide-stimulated mouse macrophages. The main compounds of S. officinalis oils were 1,8-cineole (39.5–50.3%) and camphor (8.8–25.0%). The oils revealed antifungal activity against dermatophyte strains and significantly inhibited NO production stimulated by LPS in macrophages, without affecting cell viability, in concentrations up to 0.64 μL/mL. This is the first report addressing the in vitro anti-inflammatory potential of S. officinalis oil. These findings demonstrated that bioactive concentrations of S. officinalis oils do not affect mammalian macrophages and keratinocytes viability making them suitable to be incorporated in skin care formulations for cosmetic and pharmaceutical purposes.