About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 538940, 9 pages
http://dx.doi.org/10.1155/2013/538940
Research Article

Essential Oil of Common Sage (Salvia officinalis L.) from Jordan: Assessment of Safety in Mammalian Cells and Its Antifungal and Anti-Inflammatory Potential

1Department of Basic and Applied Sciences, Shouback University College, Al-Balqa Applied University, Al-Shouback 71911, Jordan
2Center for Pharmaceutical Studies/Faculty of Pharmacy, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Universidade de Coimbra, 3000-548 Coimbra, Portugal
3Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3000-295 Coimbra, Portugal
4Faculdade de Farmácia, Universidade de Coimbra, 3000-295 Coimbra, Portugal
5Department of Agricultural Sciences, Shouback University College, Al-Balqa Applied University, Al-Shouback 71911, Jordan
6Laboratório de Farmacognosia, Faculdade de Farmácia da Universidade de Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal

Received 30 April 2013; Revised 4 September 2013; Accepted 5 September 2013

Academic Editor: Marija Mostarica-Stojković

Copyright © 2013 M. S. Abu-Darwish et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. G. P. P. Kamatou, R. L. Van Zyl, S. F. Van Vuuren et al., “Chemical composition, leaf trichome types and biological activities of the essential oils of four related Salvia species indigenous to Southern Africa,” Journal of Essential Oil Research, vol. 18, pp. 72–79, 2006. View at Scopus
  2. A. P. Longaray Delamare, I. T. Moschen-Pistorello, L. Artico, L. Atti-Serafini, and S. Echeverrigaray, “Antibacterial activity of the essential oils of Salvia officinalis L. and Salvia triloba L. cultivated in South Brazil,” Food Chemistry, vol. 100, no. 2, pp. 603–608, 2007. View at Publisher · View at Google Scholar · View at Scopus
  3. G. P. P. Kamatou, A. M. Viljoen, A. B. Gono-Bwalya et al., “The in vitro pharmacological activities and a chemical investigation of three South African Salvia species,” Journal of Ethnopharmacology, vol. 102, no. 3, pp. 382–390, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. A. Raal, A. Orav, and E. Arak, “Composition of the essential oil of Salvia officinalis L. from various European countries,” Natural Product Research, vol. 21, no. 5, pp. 406–411, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. M. H. Mirjalili, P. Salehi, A. Sonboli, and M. M. Vala, “Essential oil variation of Salvia officinalis aerial parts during its phenological cycle,” Chemistry of Natural Compounds, vol. 42, no. 1, pp. 19–23, 2006. View at Publisher · View at Google Scholar · View at Scopus
  6. N. B. Perry, R. E. Anderson, N. J. Brennan et al., “Essential oils from Dalmatian sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites,” Journal of Agricultural and Food Chemistry, vol. 47, no. 5, pp. 2048–2054, 1999. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Lamaison, C. Petitjean-Freytet, and A. Carnat, “Medicinal lamiaceae with antioxidative activities, potential sources of rosmarinic acid,” Pharmaceutica Acta Helvetiae, vol. 66, no. 7, pp. 185–188, 1991. View at Scopus
  8. M.-E. Cuvelier, C. Berset, and H. Richard, “Antioxidant constituents in sage (Salvia officinalis),” Journal of Agricultural and Food Chemistry, vol. 42, no. 3, pp. 665–669, 1994. View at Scopus
  9. B. M. Lawrence, “Progress in essential oils—sage oil,” Perfum Flavor, vol. 23, pp. 47–52, 1983.
  10. R. Croteau and F. Karp, “Biosynthesis of monoterpenes: partial purification and characterization of 1,8 cineole synthetase from Salvia officinalis,” Archives of Biochemistry and Biophysics, vol. 179, no. 1, pp. 257–265, 1977. View at Scopus
  11. R. Croteau and F. Karp, “Biosynthesis of monoterpenes: hydrolysis of bornyl pyrophosphate, an essential step in camphor biosynthesis, and hydrolysis of geranyl pyrophosphate, the acyclic precursor of camphor, by enzymes from sage (Salvia officinalis),” Archives of Biochemistry and Biophysics, vol. 198, no. 2, pp. 523–532, 1979. View at Scopus
  12. R. Croteau and F. Karp, “Biosynthesis of monoterpenes: preliminary characterization of bornyl pyrophosphate synthetase from sage (Salvia officinalis) and demonstration that geranyl pyrophosphate is the preferred substrate for cyclization,” Archives of Biochemistry and Biophysics, vol. 198, no. 2, pp. 512–522, 1979. View at Scopus
  13. R. Croteau, C. L. Hooper, and M. Felton, “Biosynthesis of monoterpenes. Partial purification and characterization of a bicyclic monoterpenol dehydrogenase from sage (Salvia officinalis),” Archives of Biochemistry and Biophysics, vol. 188, no. 1, pp. 182–193, 1978. View at Scopus
  14. R. Croteau, W. R. Alonso, A. E. Koepp, and M. A. Johnson, “Biosynthesis of monoterpenes: partial purification, characterization, and mechanism of action of 1,8-cineole synthase,” Archives of Biochemistry and Biophysics, vol. 309, no. 1, pp. 184–192, 1994. View at Publisher · View at Google Scholar · View at Scopus
  15. M. L. Wise, T. J. Savage, E. Katahira, and R. Croteau, “Monoterpene synthases from common sage (Salvia officinalis). cDna isolation, characterization, and functional expression of (+)-sabinene synthase, 1,8-cineole synthase, and (+)-bornyl diphosphate synthase,” Journal of Biological Chemistry, vol. 273, no. 24, pp. 14891–14899, 1998. View at Publisher · View at Google Scholar · View at Scopus
  16. A. C. Figueiredo, J. G. Barroso, L. G. Pedro, and J. J. C. Scheffer, “Factors affecting secondary metabolite production in plants: volatile components and essential oils,” Flavour and Fragrance Journal, vol. 23, no. 4, pp. 213–226, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. I. Pitarević, J. Kuftinec, N. Blažević, and D. Kuštrak, “Seasonal variation of essential oil yield and composition of dalmatian sage, Salvia officinalis,” Journal of Natural Products, vol. 47, no. 3, pp. 409–412, 1984. View at Scopus
  18. E. Putievsky, U. Ravid, and N. Dudai, “The influence of season and harvest frequency on essential oil and herbal yields from a pure clone of sage (Salvia officinalis) grown under cultivated conditions,” Journal of Natural Products, vol. 49, no. 2, pp. 326–329, 1986. View at Scopus
  19. R. Belhattab, L. Larous, A. C. Figueiredo, P. A. G. Santos, J. G. Barroso, and L. G. Pedro, “Origanum glandulosum Desf. grown wild in Algeria: essential oil composition and glycosidic bound volatiles,” Flavour and Fragrance Journal, vol. 20, no. 2, pp. 209–212, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. Marie, M. Maksimovic, and M. Milos, “The impact of the locality altitudes and stages of development on the volatile constituents of Salvia officinalis L. from Bosnia and Herzegovina,” Journal of Essential Oil Research, vol. 18, no. 2, pp. 178–180, 2006. View at Scopus
  21. S. Grausgruber-Gröger, C. Schmiderer, R. Steinborn, and J. Novak, “Seasonal influence on gene expression of monoterpene synthases in Salvia officinalis (Lamiaceae),” Journal of Plant Physiology, vol. 169, no. 4, pp. 353–359, 2012. View at Publisher · View at Google Scholar · View at Scopus
  22. E. Pinto, L. R. Salgueiro, C. Cavaleiro, A. Palmeira, and M. J. Gonçalves, “In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis,” Industrial Crops and Products, vol. 26, no. 2, pp. 135–141, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. Z. Y. El Astal, A. E.-R. A. Ashour, and A. A.-M. Kerrit, “Antimicrobial activity of some medicinal plant extracts in Palestine,” Pakistan Journal of Medical Sciences, vol. 21, no. 2, pp. 187–193, 2005. View at Scopus
  24. S. Amr and S. Đorđević, “The investigation of the quality of sage (Salvia officinalis L.),” Originating from Jordan, vol. 1, no. 5, pp. 103–108, 2000.
  25. S. Al-Qura’n, “Taxonomical and pharmacological survey of therapeutic plants in Jordan,” Journal of Natural Products, vol. 1, pp. 10–26, 2008.
  26. C. F. Lima, P. B. Andrade, R. M. Seabra, M. Fernandes-Ferreira, and C. Pereira-Wilson, “The drinking of a Salvia officinalis infusion improves liver antioxidant status in mice and rats,” Journal of Ethnopharmacology, vol. 97, no. 2, pp. 383–389, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. C. L. Le Tarnec, “The European Pharmacopoeia: a common European initiative by the council of Europe,” Chimia, vol. 58, no. 11, pp. 798–799, 2004. View at Scopus
  28. D. Joulain and W. A. Konig, The Atlas of Spectral Data of Sesquiterpene Hydrocarbons, E. B.Verlag Hamburg, Hamburg, Germany, 1998.
  29. R. P. Adams, Identification of Essential Oil Components by Gas Chromatography/ Quadrupole Mass Spectroscopy, Allured Publishing Corporation, Carol Stream, Ill, USA, 2004.
  30. Wiley Registry, NIST 05 Mass Spectral Library, John Wiley & Sons, Hoboken, NJ, USA, 8th edition, 2006.
  31. CLSI, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, M27-A3, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 3rd edition, 2008.
  32. CLSI, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, Approved Standard, M38-A2, Clinical and Laboratory Standards Institute, Wayne, Pa, USA, 3rd edition, 2008.
  33. L. C. Green, D. A. Wagner, and J. Glogowski, “Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids,” Analytical Biochemistry, vol. 126, no. 1, pp. 131–138, 1982. View at Scopus
  34. T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, vol. 65, no. 1-2, pp. 55–63, 1983. View at Scopus
  35. M. B. Farhat, M. J. Jordán, R. Chaouech-Hamada, A. Landoulsi, and J. A. Sotomayor, “Variations in essential oil, phenolic compounds, and antioxidant activity of tunisian cultivated Salvia officinalis L.,” Journal of Agricultural and Food Chemistry, vol. 57, no. 21, pp. 10349–10356, 2009. View at Publisher · View at Google Scholar · View at Scopus
  36. ISO, 9909, Oil of Dalmatian Sage (Salvia Officinalis L.), American National Standards Institute (ANSI), New York, NY, USA, 1997.
  37. A. Tucker, M. J. Maciarello, and J. T. Howell, “Botanical aspects of commercial sage,” Economic Botany, vol. 34, pp. 16–19, 1980.
  38. B. Naser, C. Bodinet, M. Tegtmeier, and U. Lindequist, “Thuja occidentalis (Arbor vitae): a review of its pharmaceutical, pharmacological and clinical properties,” Evidence-Based Complementary and Alternative Medicine, vol. 2, no. 1, pp. 69–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  39. K. M. Höld, N. S. Sirisoma, T. Ikeda, T. Narahashi, and J. E. Casida, “α-Thujone (the active component of absinthe): γ-aminobutyric acid type A receptor modulation and metabolic detoxification,” Proceedings of the National Academy of Sciences of the United States of America, vol. 97, no. 8, pp. 3826–3831, 2000. View at Publisher · View at Google Scholar · View at Scopus