About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 539348, 10 pages
http://dx.doi.org/10.1155/2013/539348
Research Article

Vitronectin Absorbed on Nanoparticles Mediate Cell Viability/Proliferation and Uptake by 3T3 Swiss Albino Mouse Fibroblasts: In Vitro Study

1Laboratory of Applied Biotechnology, Department of Anaesthesiological, Surgical and Emergency Sciences, Second University of Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
2Laboratory of Bioactive Polymeric Materials for Biomedical and Environmental Applications, UdR INSTM, Department of Chemistry and Industrial Chemistry, University of Pisa, Via Risorgimento 35, 59126 Pisa, Italy

Received 17 September 2012; Revised 5 December 2012; Accepted 6 December 2012

Academic Editor: Mandeep Singh Bakshi

Copyright © 2013 F. Rosso et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. H. Maeda, “SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy,” Advanced Drug Delivery Reviews, vol. 46, no. 1–3, pp. 169–185, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Stroh, J. P. Zimmer, D. G. Duda et al., “Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo,” Nature Medicine, vol. 11, no. 6, pp. 678–682, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. V. P. Torchilin, “Targeted pharmaceutical nanocarriers for cancer therapy and imaging,” AAPS Journal, vol. 9, no. 2, article 15, pp. E128–E147, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. T. Cedervall, I. Lynch, S. Lindman et al., “Understanding the nanoparticle-protein corona using methods to quntify exchange rates and affinities of proteins for nanoparticles,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 7, pp. 2050–2055, 2007. View at Publisher · View at Google Scholar · View at Scopus
  5. V. Mailander and K. Landfester, “Interaction of nanoparticles with cells,” Biomacromolecules, vol. 10, pp. 2379–2400, 2009.
  6. S. Milani, F. B. Bombelli, A. S. Pitek, K. A. Dawson, and J. Rädler, “Reversible versus irreversible binding of transferrin to polystyrene nanoparticles: soft and hard corona,” ACS Nano, vol. 6, no. 3, pp. 2532–2541, 2012.
  7. A. Jedlovszky-Hajdú, F. B. Bombelli, M. P. Monopoli, E. Tombácz, and K. A. Dawson, “Surface coatings shape the protein corona of SPIONs with relevance to their application in vivo,” Langmuir, vol. 28, no. 42, pp. 14983–14991, 2012.
  8. A. E. Nel, L. Mädler, D. Velegol et al., “Understanding biophysicochemical interactions at the nano-bio interface,” Nature Materials, vol. 8, no. 7, pp. 543–557, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. F. Alexis, E. Pridgen, L. K. Molnar, and O. C. Farokhzad, “Factors affecting the clearance and biodistribution of polymeric nanoparticles,” Molecular Pharmaceutics, vol. 5, no. 4, pp. 505–515, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. I. Lynch, A. Salvati, and K. A. Dawson, “Protein-nanoparticle interactions:what does the cell see?” Nature Nanotechnology, vol. 4, pp. 546–547, 2009.
  11. M. Lundqvist, J. Stigler, G. Elia, I. Lynch, T. Cedervall, and K. A. Dawson, “Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 38, pp. 14265–14270, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. E. Hellstrand, I. Lynch, A. Andersson et al., “Complete high-density lipoproteins in nanoparticle corona,” FEBS Journal, vol. 276, no. 12, pp. 3372–3381, 2009. View at Publisher · View at Google Scholar · View at Scopus
  13. S. Hughes, A. J. El Haj, and J. Dobson, “Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels,” Medical Engineering and Physics, vol. 27, no. 9, pp. 754–762, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. N. J. Sniadecki, “Minireview: a tiny touch: activation of cell signaling pathways with magnetic nanoparticles,” Endocrinology, vol. 151, no. 2, pp. 451–457, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. T. Cedervall, I. Lynch, M. Foy et al., “Detailed identification of plasma proteins adsorbed on copolymer nanoparticles,” Angewandte Chemie—International Edition, vol. 46, no. 30, pp. 5754–5756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. J. Deng, G. Mortimer, T. Schiller, A. Musumeci, D. Martin, and R. F. Minchin, “Differential plasma protein binding to metal oxide nanoparticles,” Nanotechnology, vol. 20, no. 45, Article ID 455101, 2009. View at Publisher · View at Google Scholar · View at Scopus
  17. S. Val, S. Hussain, S. Boland, R. Hamel, A. Baeza-Squiban, and F. Marano, “Carbon black and titanium dioxide nanoparticles induce pro-inflammatory responses in bronchial epithelial cells: need for multiparametric evaluation due to adsorption artifacts,” Inhalation Toxicology, vol. 21, no. 1, pp. 115–122, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Marano, S. Hussain, F. Rodrigues-Lima, A. Baeza-Squiban, and S. Boland, “Nanoparticles: Molecular targets and cell signalling,” Archives of Toxicology, vol. 85, no. 7, pp. 733–741, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. S. Huang, P. J. Chueh, Y. W. Lin, T. S. Shih, and S. M. Chuang, “Disturbed mitotic progression and genome segregation are involved in cell transformation mediated by nano-TiO2 long-term exposure,” Toxicology and Applied Pharmacology, vol. 241, no. 2, pp. 182–194, 2009. View at Publisher · View at Google Scholar · View at Scopus
  20. R. O. Hynes, “Cell adhesion: old and new questions,” Trends in Cell Biology, vol. 9, no. 12, pp. M33–M37, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. D. J. Sieg, C. R. Hauck, and D. D. Schlaepfer, “Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration,” Journal of Cell Science, vol. 112, no. 16, pp. 2677–2691, 1999. View at Scopus
  22. M. D. Schaller, “Biochemical signals and biological responses elicited by the focal adhesion kinase,” Biochimica et Biophysica Acta, vol. 1540, no. 1, pp. 1–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Liu, J. F. Côté, and K. Vuori, “Negative regulation of FAK signaling by SOCS proteins,” EMBO Journal, vol. 22, no. 19, pp. 5036–5046, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. S. K. Hanks and T. R. Polte, “Signaling through focal adhesion kinase,” BioEssays, vol. 19, no. 2, pp. 137–145, 1997. View at Scopus
  25. M. E. Hemler and R. R. Lobb, “The leukocyte beta 1 integrins.,” Current opinion in hematology, vol. 2, no. 1, pp. 61–67, 1995. View at Scopus
  26. E. Ruoslahti, “RGD and other recognition sequences for integrins,” Annual Review of Cell and Developmental Biology, vol. 12, pp. 697–715, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. F. Grinnell and M. K. Feld, “Fibronectin adsorption on hydrophilic and hydrophobic surfaces detected by antibody binding and analyzed during cell adhesion in serum-containing medium,” Journal of Biological Chemistry, vol. 257, no. 9, pp. 4888–4893, 1982. View at Scopus
  28. P. A. Underwood and F. A. Bennett, “A comparison of the biological activities of the cell-adhesive proteins vitronectin and fibronectin,” Journal of Cell Science, vol. 93, no. 4, pp. 641–649, 1989. View at Scopus
  29. A. M. Piras, F. Chiellini, C. Fiumi et al., “A new biocompatible nanoparticle delivery system for the release of fibrinolytic drugs,” International Journal of Pharmaceutics, vol. 357, no. 1-2, pp. 260–271, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. R. Solaro, F. Chiellini, F. Signori, C. Fiumi, R. Bizzarri, and E. Chiellini, “Nanoparticle systems for the targeted release of active principles of proteic nature,” Journal of Materials Science: Materials in Medicine, vol. 14, no. 8, pp. 705–711, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. J. Cowdall, J. Davies, M. Roberts et al., “Microparticles based on hybrid polymeric materials for controlled release of biologically active molecules. A process for preparing the same and their uses for in vivo and in vitro therapy, prophylaxis and diagnostics,” PCT International Application WO9902131, 1999.
  32. J. Cowdall, J. Davies, M. Roberts et al., “Microparticles for controlled delivery of biologically active molecules,” PCT International Application WO9902135, 1999.
  33. M. A. McLane, S. Vijay-Kumar, C. Marcinkiewicz, J. J. Calvete, and S. Niewiarowski, “Importance of the structure of the RGD-containing loop in the disintegrins echistatin and eristostatin for recognition of αIIbβ3 and αvβ3 integrins,” FEBS Letters, vol. 391, no. 1-2, pp. 139–143, 1996. View at Publisher · View at Google Scholar · View at Scopus
  34. C. C. Kumar, H. Nie, C. P. Rogers et al., “Biochemical characterization of the binding of echistatin to integrin αvβ3 receptor,” Journal of Pharmacology and Experimental Therapeutics, vol. 283, no. 2, pp. 843–853, 1997. View at Scopus
  35. E. P. Salazar, I. Hunger-Glaser, and E. Rozengurt, “Dissociation of focal adhesion kinase and paxillin tyrosine phosphorylation induced by bombesin and lysophosphatidic acid from epidermal growth factor receptor transactivation in Swiss 3T3 cells,” Journal of Cellular Physiology, vol. 194, no. 3, pp. 314–324, 2003. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Rosso, G. Marino, L. Muscariello et al., “Adhesion and proliferation of fibroblasts on RF plasma-deposited nanostructured fluorocarbon coatings: evidence of FAK activation,” Journal of Cellular Physiology, vol. 207, no. 3, pp. 636–643, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. D. Chain, T. Kreizman, H. Shapira, and S. Shaltiel, “Plasmin cleavage of vitronectin: identification of the site and consequent attenuation in binding plasminogen activator inhibitor-1,” FEBS Letters, vol. 285, no. 2, pp. 251–256, 1991. View at Publisher · View at Google Scholar · View at Scopus
  38. P. A. Underwood and F. A. Bennett, “A comparison of the biological activities of the cell-adhesive proteins vitronectin and fibronectin,” Journal of Cell Science, vol. 93, no. 4, pp. 641–649, 1989. View at Scopus
  39. M. J. D. Clift, B. Rothen-Rutishauser, D. M. Brown et al., “The impact of different nanoparticle surface chemistry and size on uptake and toxicity in a murine macrophage cell line,” Toxicology and Applied Pharmacology, vol. 232, no. 3, pp. 418–427, 2008. View at Publisher · View at Google Scholar · View at Scopus
  40. R. Breslow, Z. Yang, R. Ching, G. Trojandt, and F. Odobel, “Cyclodextrin molecules have an ability to sequester hydrophobic moieties on protein surfaces and help to stabilise proteins against aggregation, thermal denaturing and degradation,” Journal of the American Chemical Society, vol. 3536, 120 pages, 1998.
  41. S. P. Victor and C. P. Sharma, “Development and evaluation of cyclodextrin complexed hydroxyapatite nanoparticles for preferential albumin adsorption,” Colloids and Surfaces B, vol. 85, no. 2, pp. 221–228, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. S. H. Kim, J. H. Jeong, C. O. Joe, and T. G. Park, “Folate receptor mediated intracellular protein delivery using PLL-PEG-FOL conjugate,” Journal of Controlled Release, vol. 103, no. 3, pp. 625–634, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. H. S. Hung, M. Y. Chu, C. H. Lin, C. C. Wu, and S. H. Hsu, “Mediation of the migration of endothelial cells and fibroblasts on polyurethane nanocomposites by the activation of integrin-focal adhesion kinase signaling,” Journal of Biomedical Materials Research A, vol. 100, no. 1, pp. 26–37, 2012.
  44. N. Sharma-Walia, P. P. Naranatt, H. H. Krishnan, L. Zeng, and B. Chandran, “Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 envelope glycoprotein gB induces the integrin-dependent focal adhesion kinase-src-phosphatidylinositol 3-kinase-rho GTPase signal pathways and cytoskeletal rearrangements,” Journal of Virology, vol. 78, no. 8, pp. 4207–4223, 2004. View at Publisher · View at Google Scholar · View at Scopus
  45. A. S. Pitek, D. O'Connell, E. Mahon, M. P. Monopoli, B. F. Baldelli, and K. A. Dawson, “Transferrin coated nanoparticles: study of the bionano interface in human plasma,” PLoS One, vol. 7, no. 7, article e40685, 2012.