About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 540239, 7 pages
http://dx.doi.org/10.1155/2013/540239
Research Article

A Phytase Characterized by Relatively High pH Tolerance and Thermostability from the Shiitake Mushroom Lentinus edodes

1College of Biosciences and Biotechnology, Beijing University of Agriculture, Beijing 102206, China
2State Key Laboratory of Agro-Biotechnology and MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
3School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received 25 November 2012; Revised 31 January 2013; Accepted 25 February 2013

Academic Editor: Chiu-Chung Young

Copyright © 2013 Guo-Qing Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. V. Kumar, A. K. Sinha, H. P. S. Makkar, and K. Becker, “Dietary roles of phytate and phytase in human nutrition: a review,” Food Chemistry, vol. 120, no. 4, pp. 945–959, 2010. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Q. Zhang, X. F. Dong, Z. H. Wang, Q. Zhang, H. X. Wang, and J. M. Tong, “Purification, characterization, and cloning of a novel phytase with low pH optimum and strong proteolysis resistance from Aspergillus ficuum NTG-23,” Bioresource Technology, vol. 101, no. 11, pp. 4125–4131, 2010. View at Publisher · View at Google Scholar · View at Scopus
  3. H. Luo, H. Huang, P. Yang et al., “A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris,” Current Microbiology, vol. 55, no. 3, pp. 185–192, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. V. Raboy, “myo-Inositol-1,2,3,4,5,6-hexakisphosphate,” Phytochemistry, vol. 64, no. 6, pp. 1033–1043, 2003. View at Publisher · View at Google Scholar · View at Scopus
  5. X. G. Lei and J. M. Porres, “Phytase enzymology, applications, and biotechnology,” Biotechnology Letters, vol. 25, no. 21, pp. 1787–1794, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. S. Haefner, A. Knietsch, E. Scholten, J. Braun, M. Lohscheidt, and O. Zelder, “Biotechnological production and applications of phytases,” Applied Microbiology and Biotechnology, vol. 68, no. 5, pp. 588–597, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. U. Suzuki, K. Yoshimura, and M. Takaishi, “About the enzyme “phytase”, which splits ‘‘anhydro-oxy-methylene diphosphoric acid,” Bulletin of the College of Agriculture, Tokyo Imperial University, vol. 7, pp. 503–512, 1907.
  8. E. J. Mullaney, C. B. Daly, and A. H. J. Ullah, “Advances in phytase research,” Advances in Applied Microbiology, vol. 47, pp. 157–199, 2000. View at Scopus
  9. A. Pandey, G. Szakacs, C. R. Soccol, J. A. Rodriguez-Leon, and V. T. Soccol, “Production, purification and properties of microbial phytases,” Bioresource Technology, vol. 77, no. 3, pp. 203–214, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. A. Vohra and T. Satyanarayana, “Phytases: microbial sources, production, purification, and potential biotechnological applications,” Critical Reviews in Biotechnology, vol. 23, no. 1, pp. 29–60, 2003. View at Scopus
  11. P. H. Abelson, “A potential phosphate crisis,” Science, vol. 283, no. 5410, p. 2015, 1999. View at Publisher · View at Google Scholar · View at Scopus
  12. G. Y. Yoo, X. Wang, S. Choi, K. Han, J. C. Kang, and S. C. Bai, “Dietary microbial phytase increased the phosphorus digestibility in juvenile Korean rockfish Sebastes schlegeli fed diets containing soybean meal,” Aquaculture, vol. 243, no. 1–4, pp. 315–322, 2005. View at Publisher · View at Google Scholar · View at Scopus
  13. L. G. Da Silva, L. C. Trugo, S. Da Costa Terzi, and S. Couri, “Low phytate lupin flour based biomass obtained by fermentation with a mutant of Aspergillus niger,” Process Biochemistry, vol. 40, no. 2, pp. 951–954, 2005. View at Publisher · View at Google Scholar · View at Scopus
  14. O. M. Tsivileva, V. E. Nikitina, and E. A. Loshchinina, “Isolation and characterization of Lentinus edodes (Berk.) singer extracellular lectins,” Biochemistry, vol. 73, no. 10, pp. 1154–1161, 2008. View at Publisher · View at Google Scholar · View at Scopus
  15. P. V. Jeurink, C. L. Noguera, H. F. J. Savelkoul, and H. J. Wichers, “Immunomodulatory capacity of fungal proteins on the cytokine production of human peripheral blood mononuclear cells,” International Immunopharmacology, vol. 8, no. 8, pp. 1124–1133, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. V. P. Rincao, K. A. Yamamoto, N. M. Ricardo et al., “Polysaccharide and extracts from Lentinula edodes: structural features and antiviral activity,” Virology Journal, vol. 9, article 37, 2012.
  17. E. Harlow and D. Lane, “Bradford assay,” CSH Protocols, vol. 2006, no. 6, 2006.
  18. M. J. Zhu, H. X. Wang, and T. B. Ng, “Purification and identification of a phytase from fruity bodies of the winter mushroom, Flammulina velutipes,” African Journal of Biotechnology, vol. 10, no. 77, pp. 17845–17852, 2011.
  19. L. Xu, G. Zhang, H. Wang, and T. B. Ng, “Purification and characterization of phytase with a wide pH adaptation from common edible mushroom Volvariella volvacea (Straw mushroom),” Indian Journal of Biochemistry & Biophysics, vol. 49, no. 1, pp. 49–54, 2012.
  20. A. H. Ullah, “Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization,” Preparative Biochemistry, vol. 18, no. 4, pp. 459–471, 1988. View at Scopus
  21. A. H. Ullah and D. M. Gibson, “Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization,” Preparative Biochemistry, vol. 17, no. 1, pp. 63–91, 1987. View at Scopus
  22. A. H. J. Ullah and B. Q. Phillippy, “Substrate selectivity in Aspergillus ficuum phytase and acid phosphatases using myo-inositol phosphates,” Journal of Agricultural and Food Chemistry, vol. 42, no. 2, pp. 423–425, 1994. View at Scopus
  23. U. K. Laemmli and M. Favre, “Maturation of the head of bacteriophage T4. I. DNA packaging events,” Journal of Molecular Biology, vol. 80, no. 4, pp. 575–599, 1973. View at Scopus
  24. P. S. Bisen, R. K. Baghel, B. S. Sanodiya, G. S. Thakur, and G. B. K. S. Prasad, “Lentinus edodes: a macrofungus with pharmacological activities,” Current Medicinal Chemistry, vol. 17, no. 22, pp. 2419–2430, 2010. View at Publisher · View at Google Scholar · View at Scopus
  25. W. Breene, “Nutritional and medicinal value of specialty mushrooms,” Journal of Food Protection, vol. 53, no. 10, pp. 883–994, 1990.
  26. B. C. Oh, W. C. Choi, S. Park, Y. O. Kim, and T. K. Oh, “Biochemical properties and substrate specificities of alkaline and histidine acid phytases,” Applied Microbiology and Biotechnology, vol. 63, no. 4, pp. 362–372, 2004. View at Publisher · View at Google Scholar · View at Scopus
  27. P. D. Collopy and D. J. Royse, “Characterization of phytase activity from cultivated edible mushrooms and their production substrates,” Journal of Agricultural and Food Chemistry, vol. 52, no. 25, pp. 7518–7524, 2004. View at Publisher · View at Google Scholar · View at Scopus
  28. L. Segueilha, C. Lambrechts, H. Boze, G. Moulin, and P. Galzy, “Purification and properties of the Phytase from Schwanniomyces castellii,” Journal of Fermentation and Bioengineering, vol. 74, no. 1, pp. 7–11, 1992. View at Publisher · View at Google Scholar · View at Scopus
  29. C. S. Quan, W. J. Tian, S. D. Fan, and J. I. Kikuchi, “Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1,” Journal of Bioscience and Bioengineering, vol. 97, no. 4, pp. 260–266, 2004. View at Publisher · View at Google Scholar · View at Scopus
  30. A. Casey and G. Walsh, “Purification and characterization of extracellular phytase from Aspergillus niger ATCC 9142,” Bioresource Technology, vol. 86, no. 2, pp. 183–188, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. L. Escobin-Mopera, M. Ohtani, S. Sekiguchi et al., “Purification and characterization of phytase from Klebsiella pneumoniae 9-3B,” Journal of Bioscience and Bioengineering, vol. 113, no. 5, pp. 562–567, 2012.
  32. C. S. Quan, S. D. Fan, L. H. Zhang, Y. J. Wang, and Y. Ohta, “Purification and properties of a phytase from Candida krusei WZ-001,” Journal of Bioscience and Bioengineering, vol. 94, no. 5, pp. 419–425, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. O. Kim, H. K. Kim, K. S. Bae, J. H. Yu, and T. K. Oh, “Purification and properties of a thermostable phytase from Bacillus sp. DS11,” Enzyme and Microbial Technology, vol. 22, no. 1, pp. 2–7, 1998. View at Publisher · View at Google Scholar · View at Scopus
  34. M. Wyss, R. Brugger, A. Kronenberger et al., “Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties,” Applied and Environmental Microbiology, vol. 65, no. 2, pp. 367–373, 1999. View at Scopus