About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 542168, 14 pages
http://dx.doi.org/10.1155/2013/542168
Review Article

Hydroquinone: Environmental Pollution, Toxicity, and Microbial Answers

1Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Prof. Egas Moniz, 1649-028 Lisboa, Portugal
2Departamento de Ciências e Tecnologia da Biomassa, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Campus de Caparica, 2829-516 Caparica, Portugal

Received 28 April 2013; Accepted 20 June 2013

Academic Editor: Xavier Nsabagasani

Copyright © 2013 Francisco J. Enguita and Ana Lúcia Leitão. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. L. O'Donoghue, “Hydroquinone and its analogues in dermatology—a risk-benefit viewpoint,” Journal of Cosmetic Dermatology, vol. 5, no. 3, pp. 196–203, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Santos, P. Yustos, A. Quintanilla, F. García-Ochoa, J. A. Casas, and J. J. Rodriguez, “Evolution of toxicity upon wet catalytic oxidation of phenol,” Environmental Science and Technology, vol. 38, no. 1, pp. 133–138, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Thammanayakatip, Y. Oshima, and S. Koda, “Inhibition effect in supercritical water oxidation of hydroquinone,” Industrial and Engineering Chemistry Research, vol. 37, no. 5, pp. 2061–2063, 1998. View at Scopus
  4. Q. Geng, Q. Guo, C. Cao, and L. Wang, “Investigation into NanoTiO2/ACSPCR for decomposition of aqueous hydroquinone,” Industrial and Engineering Chemistry Research, vol. 47, no. 8, pp. 2561–2568, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. K. H. Jones, P. W. Trudgill, and D. J. Hopper, “4-Ethylphenol metabolism by Aspergillus fumigatus,” Applied and Environmental Microbiology, vol. 60, no. 6, pp. 1978–1983, 1994. View at Scopus
  6. M. H. M. Eppink, E. Cammaart, D. Van Wassenaar, W. J. Middelhoven, and W. J. H. Van Berkel, “Purification and properties of hydroquinone hydroxylase, a FAD-dependent monooxygenase involved in the catabolism of 4-hydroxybenzoate in Candida parapsilosis CBS604,” European Journal of Biochemistry, vol. 267, no. 23, pp. 6832–6840, 2000. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Kamada, S. Abe, N. Hiratsuka, H. Wariishi, and H. Tanaka, “Mineralization of aromatic compounds by brown-rot basidiomycetes-mechanisms involved in initial attack on the aromatic ring,” Microbiology, vol. 148, no. 6, pp. 1939–1946, 2002. View at Scopus
  8. A. L. Leitão, M. P. Duarte, and J. S. Oliveira, “Degradation of phenol by a halotolerant strain of Penicillium chrysogenum,” International Biodeterioration and Biodegradation, vol. 59, no. 3, pp. 220–225, 2007. View at Publisher · View at Google Scholar · View at Scopus
  9. T. Nakamura, H. Ichinose, and H. Wariishi, “Flavin-containing monooxygenases from Phanerochaete chrysosporium responsible for fungal metabolism of phenolic compounds,” Biodegradation, vol. 23, no. 3, pp. 343–350, 2012. View at Publisher · View at Google Scholar · View at Scopus
  10. J. C. Spain and D. T. Gibson, “Pathway for biodegradation of p-nitrophenol in a Moraxella sp,” Applied and Environmental Microbiology, vol. 57, no. 3, pp. 812–819, 1991. View at Scopus
  11. M. J. H. Moonen, N. M. Kamerbeek, A. H. Westphal et al., “Elucidation of the 4-hydroxyacetophenone catabolic pathway in Pseudomonas fluorescens ACB,” Journal of Bacteriology, vol. 190, no. 15, pp. 5190–5198, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. M. J. H. Moonen, S. A. Synowsky, W. A. M. Van Den Berg et al., “Hydroquinone dioxygenase from Pseudomonas fluorescens ACB: a novel member of the family of nonheme-iron(II)-dependent dioxygenases,” Journal of Bacteriology, vol. 190, no. 15, pp. 5199–5209, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. J.-J. Zhang, H. Liu, Y. Xiao, X.-E. Zhang, and N.-Y. Zhou, “Identification and characterization of catabolic para-nitrophenol 4-monooxygenase and para-benzoquinone reductase from pseudomonas sp. strain WBC-3,” Journal of Bacteriology, vol. 191, no. 8, pp. 2703–2710, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. T. Essam, M. A. Amin, O. E. Tayeb, B. Mattiasson, and B. Guieysse, “Kinetics and metabolic versatility of highly tolerant phenol degrading Alcaligenes strain TW1,” Journal of Hazardous Materials, vol. 173, no. 1–3, pp. 783–788, 2010. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Zhang, W. Sun, L. Xu et al., “Identification of the para-nitrophenol catabolic pathway, and characterization of three enzymes involved in the hydroquinone pathway, in pseudomonas sp. 1-7,” BMC Microbiology, vol. 12, article 27, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. A. L. T. Ribeiro, A. L. B. Shimada, C. B. Hebeda et al., “In vivo hydroquinone exposure alters circulating neutrophil activities and impairs LPS-induced lung inflammation in mice,” Toxicology, vol. 288, no. 1–3, pp. 1–7, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. E. J. Yang, J.-S. Lee, C.-Y. Yun, and I. S. Kim, “The pro-apoptotic effect of hydroquinone in human neutrophils and eosinophils,” Toxicology in Vitro, vol. 25, no. 1, pp. 131–137, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. C. B. Hebeda, F. J. Pinedo, S. M. Bolonheis et al., “Intracellular mechanisms of hydroquinone toxicity on endotoxin-activated neutrophils,” Archives of Toxicology, vol. 86, pp. 1773–1781, 2012.
  19. J.-S. Lee, E. J. Yang, and I. S. Kim, “Hydroquinone-induced apoptosis of human lymphocytes through caspase 9/3 pathway,” Molecular Biology Reports, vol. 39, pp. 6737–6743, 2012. View at Publisher · View at Google Scholar · View at Scopus
  20. A. L. B. Shimada, A. L. T. Ribeiro, S. M. Bolonheis, V. Ferraz-de-Paula, C. B. Hebeda, and S. H. P. Farsky, “In vivo hydroquinone exposure impairs MCP-1 secretion and monocyte recruitment into the inflamed lung,” Toxicology, vol. 296, no. 1–3, pp. 20–26, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. P. J. Deisinger, T. S. Hill, and J. C. English, “Human exposure to naturally occurring hydroquinone,” Journal of Toxicology and Environmental Health, vol. 47, no. 1, pp. 31–46, 1996. View at Scopus
  22. T. A. McDonald, N. T. Holland, C. Skibola, P. Duramad, and M. T. Smith, “Hypothesis: phenol and hydroquinone derived mainly from diet and gastrointestinal flora activity are causal factors in leukemia,” Leukemia, vol. 15, no. 1, pp. 10–20, 2001. View at Publisher · View at Google Scholar · View at Scopus
  23. M. North, V. J. Tandon, R. Thomas et al., “Genome-Wide functional profiling reveals genes required for tolerance to benzene metabolites in yeast,” PLoS ONE, vol. 6, no. 8, Article ID e24205, 2011. View at Publisher · View at Google Scholar · View at Scopus
  24. C. Sarkar, P. K. Mitra, S. Saha, C. Nayak, and R. Chakraborty, “Effect of copper-hydroquinone complex on oxidative stress-related parameters in human erythrocytes (in vitro),” Toxicology Mechanisms and Methods, vol. 19, no. 2, pp. 86–93, 2009. View at Publisher · View at Google Scholar · View at Scopus
  25. I. Rychlinska and S. Nowak, “Quantitative determination of arbutin and hydroquinone in different plant materials by HPLC,” Notulae Botanicae Horti Agrobotanici Cluj-Napoca, vol. 40, pp. 109–113, 2012.
  26. OECD SIDS, “Hydroquinone,” CAS 123-31-9, UNEP Publications, 2012.
  27. D. McGregor, “Hydroquinone: an evaluation of the human risks from its carcinogenic and mutagenic properties,” Critical Reviews in Toxicology, vol. 37, no. 10, pp. 887–914, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. S. Suresh, V. C. Srivastava, and I. M. Mishra, “Adsorption of catechol, resorcinol, hydroquinone, and their derivatives: a review,” International Journal of Energy and Environmental Engineering, vol. 3, article 32, 2012.
  29. Y. Song, J. Xie, Y. Song et al., “Calculation of standard electrode potential of half reaction for benzoquinone and hydroquinone,” Spectrochimica Acta Part A, vol. 65, no. 2, pp. 333–339, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. T. Sawahata and R. A. Neal, “Biotransformation of phenol to hydroquinone and catechol by rat liver microsomes,” Molecular Pharmacology, vol. 23, no. 2, pp. 453–460, 1983. View at Scopus
  31. T. Tsutsui, N. Hayashi, H. Maizumi, J. Huff, and J. C. Barrett, “Benzene-, catechol-, hydroquinone- and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells,” Mutation Research, vol. 373, no. 1, pp. 113–123, 1997. View at Publisher · View at Google Scholar · View at Scopus
  32. V. V. Subrahmanyam, P. Kolachana, and M. T. Smith, “Hydroxylation of phenol to hydroquinone, catalyzed by a human myeloperoxidase-superoxide complex: possible implications in benzene-induced myelotoxicity,” Free Radical Research Communications, vol. 15, no. 5, pp. 285–296, 1991. View at Scopus
  33. R. Guerra, “Ecotoxicological and chemical evaluation of phenolic compounds in industrial effluents,” Chemosphere, vol. 44, no. 8, pp. 1737–1747, 2001. View at Publisher · View at Google Scholar · View at Scopus
  34. H. Bahrs, A. Putschew, and C. E. Steinberg, “Toxicity of hydroquinone to different freshwater phototrophs is influenced by time of exposure and pH,” Environmental Science and Pollution Research, vol. 20, pp. 146–154, 2013.
  35. K. L. E. Kaiser and V. S. Palabrica, “Photobacterium phosphoreum toxicity data index,” Water Pollution Research Journal of Canada, vol. 26, no. 3, pp. 361–431, 1991. View at Scopus
  36. H. Chen, J. Yao, F. Wang et al., “Toxicity of three phenolic compounds and their mixtures on the gram-positive bacteria Bacillus subtilis in the aquatic environment,” Science of the Total Environment, vol. 408, no. 5, pp. 1043–1049, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. H. Chen, J. Yao, F. Wang, M. M. F. Choi, E. Bramanti, and G. Zaray, “Study on the toxic effects of diphenol compounds on soil microbial activity by a combination of methods,” Journal of Hazardous Materials, vol. 167, no. 1-3, pp. 846–851, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. T. Shiga, H. Suzuki, A. Yamamoto, H. Yamamoto, and K. Yamamoto, “Hydroquinone, a benzene metabolite, induces Hog1-dependent stress response signaling and causes aneuploidyin Saccharomyces cerevisiae,” Journal of Radiation Research, vol. 51, no. 4, pp. 405–415, 2010. View at Publisher · View at Google Scholar · View at Scopus
  39. I. Florin, L. Rutberg, M. Curvall, and C. R. Enzell, “Screening of tobacco smoke constituents for mutagenicity using the Ames' test,” Toxicology, vol. 15, no. 3, pp. 219–232, 1980. View at Publisher · View at Google Scholar · View at Scopus
  40. C. H. Sommers and R. H. Schiestl, “Effect of benzene and its closed ring metabolites on intrachromosomal recombination in Saccharomyces cerevisiae,” Mutation Research, vol. 593, no. 1-2, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  41. Q. Lan, L. Zhang, M. Shen et al., “Large-scale evaluation of candidate genes identifies associations between DNA repair and genomic maintenance and development of benzene hematotoxicity,” Carcinogenesis, vol. 30, no. 1, pp. 50–58, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. F. W. Kari, J. Bucher, S. L. Eustis, J. K. Haseman, and J. E. Huff, “Toxicity and carcinogenicity of hydroquinone in F344/N rats and B6C3F1 mice,” Food and Chemical Toxicology, vol. 30, no. 9, pp. 737–747, 1992. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Marrazzini, L. Chelotti, I. Barrai, N. Loprieno, and R. Barale, “In vivo genotoxic interactions among three phenolic benzene metabolites,” Mutation Research, vol. 341, no. 1, pp. 29–46, 1994. View at Publisher · View at Google Scholar · View at Scopus
  44. M. H. Lee, S. W. Chung, B. Y. Kang, K.-M. Kim, and T. S. Kim, “Hydroquinone, a reactive metabolite of benzene, enhances interleukin-4 production in CD4+ T cells and increases immunoglobulin E levels in antigen-primed mice,” Immunology, vol. 106, no. 4, pp. 496–502, 2002. View at Publisher · View at Google Scholar · View at Scopus
  45. Y. Hiraku and S. Kawanishi, “Oxidative DNA damage and apoptosis induced by benzene metabolites,” Cancer Research, vol. 56, no. 22, pp. 5172–5178, 1996. View at Scopus
  46. L. Luo, L. Jiang, C. Geng, J. Cao, and L. Zhong, “Hydroquinone-induced genotoxicity and oxidative DNA damage in HepG2 cells,” Chemico-Biological Interactions, vol. 173, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. K. Morimoto, S. Wolff, and A. Koizumi, “Induction of sister-chromatid exchanges in human lymphocytes by microsomal activation of benzene metabolites,” Mutation Research, vol. 119, no. 3-4, pp. 355–360, 1983. View at Scopus
  48. G. L. Erexson, J. L. Wilmer, and A. D. Kligerman, “Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro,” Cancer Research, vol. 45, no. 6, pp. 2471–2477, 1985. View at Scopus
  49. S. Knadle, “Synergistic interaction between hydroquinone and acetaldehyde in the induction of sister chromatid exchange in human lymphocytes in vitro,” Cancer Research, vol. 45, no. 10, pp. 4853–4857, 1985. View at Scopus
  50. Q. Li, L. Geiselhart, J. N. Mittler, S. P. Mudzinski, D. A. Lawrence, and B. M. Freed, “Inhibition of human T lymphoblast proliferation by hydroquinone,” Toxicology and Applied Pharmacology, vol. 139, no. 2, pp. 317–323, 1996. View at Publisher · View at Google Scholar · View at Scopus
  51. H. S. Bae, J. M. Lee, and S.-T. Lee, “Biodegradation of 4-chlorophenol via a hydroquinone pathway by Arthrobacter ureafaciens CPR706,” FEMS Microbiology Letters, vol. 145, no. 1, pp. 125–129, 1996. View at Publisher · View at Google Scholar · View at Scopus
  52. F. K. Higson and D. D. Focht, “Bacterial degradation of ring-chlorinated acetophenones,” Applied and Environmental Microbiology, vol. 56, no. 12, pp. 3678–3685, 1990. View at Scopus
  53. N. M. Kamerbeek, M. J. H. Moonen, J. G. M. Van Der Ven, W. J. H. Van Berkel, M. W. Fraaije, and D. B. Janssen, “4-Hydroxyacetophenone monooxygenase from Pseudomonas fluorescens ACB. A novel flavoprotein catalyzing Baeyer-Villiger oxidation of aromatic compounds,” European Journal of Biochemistry, vol. 268, no. 9, pp. 2547–2557, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. K. Nordin, M. Unell, and J. K. Jansson, “Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6,” Applied and Environmental Microbiology, vol. 71, no. 11, pp. 6538–6544, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. J. J. Anderson and S. Dagley, “Catabolism of aromatic acids in Trichosporon cutaneum,” Journal of Bacteriology, vol. 141, no. 2, pp. 534–543, 1980. View at Scopus
  56. W. J. H. Van Berkel, M. H. M. Eppink, W. J. Middelhoven, J. Vervorrt, and M. C. M. Rietjens, “Catabolism of 4-hydroxybenzoate in Candida parapsilosis proceeds through initial oxidative decarboxylation by a FAD-dependent 4-hydroxybenzoate 1-hydroxylase,” FEMS Microbiology Letters, vol. 121, no. 2, pp. 207–216, 1994. View at Publisher · View at Google Scholar · View at Scopus
  57. S. Takenaka, S. Okugawa, M. Kadowaki, S. Murakami, and K. Aoki, “The metabolic pathway of 4-aminophenol in Burkholderia sp. strain AK-5 differs from that of aniline and aniline with C-4 substituents,” Applied and Environmental Microbiology, vol. 69, no. 9, pp. 5410–5413, 2003. View at Publisher · View at Google Scholar · View at Scopus
  58. J. M. Darby, D. G. Taylor, and D. J. Hopper, “Hydroquinone as the ring-fission substrate in the catabolism of 4-ethylphenol and 4-hydroxyacetophenone by Pseudomonas putida JD1,” Journal of General Microbiology, vol. 133, pp. 2137–2146, 1987.
  59. L. Xun, J. Bohuslavek, and M. Cai, “Characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) of Sphingomonas chlorophenolica ATCC 39723,” Biochemical and Biophysical Research Communications, vol. 266, no. 2, pp. 322–325, 1999. View at Publisher · View at Google Scholar · View at Scopus
  60. Y. Ohtsubo, K. Miyauchi, K. Kanda et al., “PcpA, which is involved in the degradation of pentachlorophenol in Sphingomonas chlorophenolica ATCC39723, is a novel type of ring-cleavage dioxygenase,” FEBS Letters, vol. 459, no. 3, pp. 395–398, 1999. View at Publisher · View at Google Scholar · View at Scopus
  61. L. Xu, K. Resing, S. L. Lawson, P. C. Babbitt, and S. D. Copley, “Evidence that pcpA encodes 2,6-dichlorohydroquinone dioxygenase, the ring cleavage enzyme required for pentachlorophenol degradation in Sphingomonas chlorophenolica strain ATCC 39723,” Biochemistry, vol. 38, no. 24, pp. 7659–7669, 1999. View at Publisher · View at Google Scholar · View at Scopus
  62. T. E. MacHonkin, P. L. Holland, K. N. Smith et al., “Determination of the active site of Sphingobium chlorophenolicum 2,6-dichlorohydroquinone dioxygenase (PcpA),” Journal of Biological Inorganic Chemistry, vol. 15, no. 3, pp. 291–301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. W. Sun, R. Sammynaiken, L. Chen et al., “Sphingobium chlorophenolicum dichlorohydroquinone dioxygenase (PcpA) is alkaline resistant and thermally stable,” International Journal of Biological Sciences, vol. 7, no. 8, pp. 1171–1179, 2011. View at Scopus
  64. R. P. Hayes, A. R. Green, M. S. Nissen, K. M. Lewis, L. Xun, and C. Kang, “Structural characterization of 2,6-dichloro-p-hydroquinone 1,2-dioxygenase (PcpA) from Sphingobium chlorophenolicum, a new type of aromatic ring-cleavage enzyme,” Molecular Microbiology, vol. 88, no. 3, pp. 523–536, 2013. View at Publisher · View at Google Scholar
  65. B. A. Kolvenbach, M. Lenz, D. Benndorf et al., “Purification and characterization of hydroquinone dioxygenase from Sphingomonas sp. strain TTNP3,” AMB Express, vol. 1, article 8, 2011.
  66. S. Vikram, J. Pandey, N. Bhalla et al., “Branching of the p-nitrophenol (PNP) degradation pathway in Burkholderia sp. Strain SJ98: evidences from genetic characterization of PNP gene cluster,” AMB Express, vol. 2, article 30, 2012.
  67. M. Kalin, H. Y. Neujahr, R. N. Weissmahr et al., “Phenol hydroxylase from Trichosporon cutaneum: gene cloning, sequence analysis, and functional expression in Escherichia coli,” Journal of Bacteriology, vol. 174, no. 22, pp. 7112–7120, 1992. View at Scopus
  68. M. Gerginova, J. Manasiev, N. Shivarova, and Z. Alexieva, “Influence of various phenolic compounds on phenol hydroxylase activity of a Trichosporon cutaneum strain,” Zeitschrift fur Naturforschung C, vol. 62, no. 1-2, pp. 83–86, 2007. View at Scopus
  69. L. Vilimkova, J. Paca, V. Kremlackova, and M. Stiborova, “Isolation of cytoplasmic NADPH-dependent phenol hydroxylase and catechol-1,2-dioxygenase from Candida tropicalis yeast,” Interdiscip Toxicol, vol. 1, pp. 225–230, 2008.
  70. V. Izzo, G. Leo, R. Scognamiglio, L. Troncone, L. Birolo, and A. Di Donato, “PHK from phenol hydroxylase of Pseudomonas sp. OX1. Insight into the role of an accessory protein in bacterial multicomponent monooxygenases,” Archives of Biochemistry and Biophysics, vol. 505, no. 1, pp. 48–59, 2011. View at Publisher · View at Google Scholar · View at Scopus
  71. E. Cadieux, V. Vrajmasu, C. Achim, J. Powlowski, and E. Münck, “Biochemical, mössbauer, and EPR studies of the diiron cluster of phenol hydroxylase from Pseudomonas sp. strain CF 600,” Biochemistry, vol. 41, no. 34, pp. 10680–10691, 2002. View at Publisher · View at Google Scholar · View at Scopus
  72. M. Merimaa, E. Heinaru, M. Liivak, E. Vedler, and A. Heinaru, “Grouping of phenol hydroxylase and catechol 2,3-dioxygenase genes among phenol- and p-cresol-degrading Pseudomonas species and biotypes,” Archives of Microbiology, vol. 186, no. 4, pp. 287–296, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. M. H. Sazinsky, P. W. Dunten, M. S. McCormick, A. DiDonato, and S. J. Lippard, “X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase,” Biochemistry, vol. 45, no. 51, pp. 15392–15404, 2006. View at Publisher · View at Google Scholar · View at Scopus
  74. M. S. McCormick and S. J. Lippard, “Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp. OX1,” Biochemistry, vol. 50, no. 51, pp. 11058–11069, 2011. View at Publisher · View at Google Scholar · View at Scopus
  75. C. E. Tinberg, W. J. Song, V. Izzo, and S. J. Lippard, “Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/ o-xylene monooxygenase from Pseudomonas sp. OX1,” Biochemistry, vol. 50, no. 11, pp. 1788–1798, 2011. View at Publisher · View at Google Scholar · View at Scopus
  76. W. J. H. van Berkel, N. M. Kamerbeek, and M. W. Fraaije, “Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts,” Journal of Biotechnology, vol. 124, no. 4, pp. 670–689, 2006. View at Publisher · View at Google Scholar · View at Scopus
  77. C. Enroth, H. Neujahr, G. Schneider, and Y. Lindqvist, “The crystal structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a concerted conformational change in the enzyme and its cofactor during catalysis,” Structure, vol. 6, no. 5, pp. 605–617, 1998. View at Scopus
  78. J. A. Asturias and K. N. Timmis, “Three different 2,3-dihydroxybiphenyl-1,2-dioxygenase genes in the gram- positive polychlorobiphenyl-degrading bacterium Rhodococcus globerulus P6,” Journal of Bacteriology, vol. 175, no. 15, pp. 4631–4640, 1993. View at Scopus
  79. R. Eck and J. Belter, “Cloning and characterization of a gene coding for the catechol 1,2-dioxygenase of Arthrobacter sp. mA3,” Gene, vol. 123, no. 1, pp. 87–92, 1993. View at Publisher · View at Google Scholar · View at Scopus
  80. D. L. Daubaras, K. Saido, and A. M. Chakrabarty, “Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100,” Applied and Environmental Microbiology, vol. 62, no. 11, pp. 4276–4279, 1996. View at Scopus
  81. P. J. Ayoubi and A. R. Harker, “Whole-cell kinetics of trichloroethylene degradation by phenol hydroxylase in a Ralstonia eutropha JMP134 derivative,” Applied and Environmental Microbiology, vol. 64, no. 11, pp. 4353–4356, 1998. View at Scopus
  82. S. Hino, K. Watanabe, and N. Takahashi, “Phenol hydroxylase cloned from Ralstonia eutropha strain E2 exhibits novel kinetic properties,” Microbiology, vol. 144, no. 7, pp. 1765–1772, 1998. View at Scopus
  83. H.-K. Chang, P. Mohseni, and G. J. Zylstra, “Characterization and regulation of the genes for a novel anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1,” Journal of Bacteriology, vol. 185, no. 19, pp. 5871–5881, 2003. View at Publisher · View at Google Scholar · View at Scopus
  84. M. Ferraroni, J. Seifert, V. M. Travkin et al., “Crystal structure of the hydroxyquinol 1,2-dioxygenase from Nocardioides simplex 3E, a key enzyme involved in polychlorinated aromatics biodegradation,” Journal of Biological Chemistry, vol. 280, no. 22, pp. 21144–21154, 2005. View at Publisher · View at Google Scholar · View at Scopus
  85. J. Wesche, E. Hammer, D. Becher, G. Burchhardt, and F. Schauer, “The bphC gene-encoded 2,3-dihydroxybiphenyl-1,2-dioxygenase is involved in complete degradation of dibenzofuran by the biphenyl-degrading bacterium Ralstonia sp. SBUG 290,” Journal of Applied Microbiology, vol. 98, no. 3, pp. 635–645, 2005. View at Publisher · View at Google Scholar · View at Scopus
  86. Y. Tao, A. Fishman, W. E. Bentley, and T. K. Wood, “Oxidation of benzene to phenol, catechol, and 1,2,3-trihydroxybenzene by toluene 4-monooxygenase of Pseudomonas mendocina KR1 and toluene 3-monooxygenase of Ralstonia pickettii PKO1,” Applied and Environmental Microbiology, vol. 70, no. 7, pp. 3814–3820, 2004. View at Publisher · View at Google Scholar · View at Scopus
  87. S. Murakami, N. Kodama, R. Shinke, and K. Aoki, “Classification of catechol 1,2-dioxygenase family: sequence analysis of a gene for the catechol 1,2-dioxygenase showing high specificity for methylcatechols from Gram+ aniline-assimilating Rhodococcus erythropolis AN-13,” Gene, vol. 185, no. 1, pp. 49–54, 1997. View at Publisher · View at Google Scholar · View at Scopus
  88. T. Hatta, O. Nakano, N. Imai, N. Takizawa, and H. Kiyohara, “Cloning and sequence analysis of hydroxyquinol 1,2-dioxygenase gene in 2,4,6-trichlorophenol-degrading Ralstonia pickettii DTP0602 and characterization of its product,” Journal of Bioscience and Bioengineering, vol. 87, no. 3, pp. 267–272, 1999. View at Publisher · View at Google Scholar · View at Scopus
  89. Y.-N. Li, A. W. Porter, A. Mumford, X.-H. Zhao, and L. Y. Young, “Bacterial community structure and bamA gene diversity in anaerobic degradation of toluene and benzoate under denitrifying conditions,” Journal of Applied Microbiology, vol. 112, no. 2, pp. 269–279, 2012. View at Publisher · View at Google Scholar · View at Scopus
  90. J. A. Valderrama, G. Durante-Rodríguez, B. Blázquez, J. L. García, M. Carmona, and E. Díaz, “Bacterial degradation of benzoate: cross-regulation between aerobic and anaerobic pathways,” Journal of Biological Chemistry, vol. 287, no. 13, pp. 10494–10508, 2012. View at Publisher · View at Google Scholar · View at Scopus
  91. N. Gorny and B. Schink, “Complete anaerobic oxidation of hydroquinone by Desulfococcus sp. strain Hy5: indications of hydroquinone carboxylation to gentisate,” Archives of Microbiology, vol. 162, no. 1-2, pp. 131–135, 1994. View at Publisher · View at Google Scholar · View at Scopus
  92. N. Gorny and B. Schink, “Hydroquinone degradation via reductive dehydroxylation of gentisyl-CoA by a strictly anaerobic fermenting bacterium,” Archives of Microbiology, vol. 161, no. 1, pp. 25–32, 1994. View at Publisher · View at Google Scholar · View at Scopus
  93. C. E. Milliken, G. P. Meier, K. R. Sowers, and H. D. May, “Chlorophenol production by anaerobic microorganisms: transformation of a biogenic chlorinated hydroquinone metabolite,” Applied and Environmental Microbiology, vol. 70, no. 4, pp. 2494–2496, 2004. View at Publisher · View at Google Scholar · View at Scopus
  94. C. E. Milliken, G. P. Meier, J. E. M. Watts, K. R. Sowers, and H. D. May, “Microbial anaerobic demethylation and dechlorination of chlorinated hydroquinone metabolites synthesized by basidiomycete fungi,” Applied and Environmental Microbiology, vol. 70, no. 1, pp. 385–392, 2004. View at Publisher · View at Google Scholar · View at Scopus
  95. R. Glockler, A. Tschech, and G. Fuchs, “Reductive dehydroxylation of 4-hydroxybenzoyl-CoA to benzoyl-CoA in a denitrifying, phenol-degrading Pseudomonas species,” FEBS Letters, vol. 251, no. 1-2, pp. 237–240, 1989. View at Scopus