About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 545983, 8 pages
http://dx.doi.org/10.1155/2013/545983
Research Article

Tyrosine Phosphorylation Modulates the Vascular Responses of Mesenteric Arteries from Human Colorectal Tumors

1Departamento de Cirugía General y Digestiva (Seccion B), Hospital Universitario “12 de Octubre”, Universidad Complutense, Avenida de Córdoba, s/n, 28041 Madrid, Spain
2Departamento de Fisiología, Universidad de Valencia, Avenida Blasco Ibáñez 15, 46010 Valencia, Spain
3INCLIVA, Instituto Investigación Sanitaria, Hospital Clínico Universitario, Avenida Blasco Ibáñez 15, 46010 Valencia, Spain
4Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Arzobispo Morcillo 2, 28029 Madrid, Spain

Received 22 April 2013; Revised 7 August 2013; Accepted 2 October 2013

Academic Editor: Gary E. Gallick

Copyright © 2013 Eduardo Ferrero et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Choura and A. Rebaï, “Receptor tyrosine kinases: from biology to pathology,” Journal of Receptors and Signal Transduction, vol. 31, no. 6, pp. 387–394, 2011. View at Publisher · View at Google Scholar · View at Scopus
  2. T. Hunter, “The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease,” Philosophical Transactions of the Royal Society B, vol. 353, no. 1368, pp. 583–605, 1998. View at Publisher · View at Google Scholar · View at Scopus
  3. S. Madhusudan and T. S. Ganesan, “Tyrosine kinase inhibitors in cancer therapy,” Clinical Biochemistry, vol. 37, no. 7, pp. 618–635, 2004. View at Publisher · View at Google Scholar · View at Scopus
  4. G. Elberg, J. Li, A. Leibovitch, and Y. Shechter, “Non-receptor cytosolic protein tyrosine kinases from various rat tissues,” Biochimica et Biophysica Acta, vol. 1269, no. 3, pp. 299–306, 1995. View at Publisher · View at Google Scholar · View at Scopus
  5. J. Yu, K. Mizumoto, T. Kakutani, A. Hasegawa, K. Ogawa, and Y. Hatano, “Comparison of the effects of isoflurane and sevoflurane on protein tyrosine phosphorylation-mediated vascular contraction,” Acta Anaesthesiologica Scandinavica, vol. 49, no. 6, pp. 852–858, 2005. View at Publisher · View at Google Scholar · View at Scopus
  6. N. Villalba, A. Kun, E. Stankevicius, and U. Simonsen, “Role for tyrosine kinases in contraction of rat penile small arteries,” Journal of Sexual Medicine, vol. 7, no. 6, pp. 2086–2095, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Ö. Uzun and A. T. Demiryürek, “Involvement of tyrosine kinase pathway in acute hypoxic vasoconstriction in sheep isolated pulmonary vein,” Vascular Pharmacology, vol. 40, no. 3, pp. 175–181, 2003. View at Publisher · View at Google Scholar · View at Scopus
  8. T. Kitazono, S. Ibayashi, T. Nagao, K. Fujii, T. Kagiyama, and M. Fujishima, “Role of tyrosine kinase in dilator responses of rat basilar artery in vivo,” Hypertension, vol. 31, no. 3, pp. 861–865, 1998. View at Scopus
  9. P. Carmeliet, “VEGF as a key mediator of angiogenesis in cancer,” Oncology, vol. 69, supplement 3, pp. 4–10, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. A.-K. Olsson, A. Dimberg, J. Kreuger, and L. Claesson-Welsh, “VEGF receptor signalling—in control of vascular function,” Nature Reviews Molecular Cell Biology, vol. 7, no. 5, pp. 359–371, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. E. Stuttfeld and K. Ballmer-Hofer, “Structure and function of VEGF receptors,” IUBMB Life, vol. 61, no. 9, pp. 915–922, 2009. View at Publisher · View at Google Scholar · View at Scopus
  12. N. Ferrara, “Vascular endothelial growth factor: basic science and clinical progress,” Endocrine Reviews, vol. 25, no. 4, pp. 581–611, 2004. View at Publisher · View at Google Scholar · View at Scopus
  13. V. Dymicka-Piekarska, K. Guzinska-Ustymowicz, A. Kuklinski, and H. Kemona, “Prognostic significance of adhesion molecules (sICAM-1, sVCAM-1) and VEGF in colorectal cancer patients,” Thrombosis Research, vol. 129, no. 4, pp. e47–e50, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. J. E. Peterson, D. Zurakowski, J. E. Italiano Jr. et al., “VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients,” Angiogenesis, vol. 15, no. 2, pp. 265–273, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. N. R. Smith, D. Baker, N. H. James et al., “Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers,” Clinical Cancer Research, vol. 16, no. 14, pp. 3548–3561, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. H. Amaya, N. Tanigawa, C. Lu et al., “Association of vascular endothelial growth factor expression with tumor angiogenesis, survival and thymidine phosphorylase/platelet-derived endothelial cell growth factor expression in human colorectal cancer,” Cancer Letters, vol. 119, no. 2, pp. 227–235, 1997. View at Publisher · View at Google Scholar · View at Scopus
  17. A. K. Srivastava, “Protein tyrosine phosphorylation in cardiovascular system,” Molecular and Cellular Biochemistry, vol. 149-150, pp. 87–94, 1995. View at Publisher · View at Google Scholar · View at Scopus
  18. D. F. Sellitti, E. Puggina, C. Lagranha et al., “TGF-β-like transcriptional effects of thyroglobulin (Tg) in mouse mesangial cells,” Endocrine Journal, vol. 54, no. 3, pp. 449–458, 2007. View at Publisher · View at Google Scholar · View at Scopus
  19. G. L. Peterson, “A simplification of the protein assay method of Lowry et al. Which is more generally applicable,” Analytical Biochemistry, vol. 83, no. 2, pp. 346–356, 1977. View at Scopus
  20. L. B. Jakeman, M. Armanini, H. S. Phillips, and N. Ferrara, “Developmental expression of binding sites and messenger ribonucleic acid for vascular endothelial growth factor suggests a role for this protein in vasculogenesis and angiogenesis,” Endocrinology, vol. 133, no. 2, pp. 848–859, 1993. View at Publisher · View at Google Scholar · View at Scopus
  21. S. Alcón, P. J. Camello, L. J. García, and M. J. Pozo, “Activation of tyrosine kinase pathway by vanadate in gallbladder smooth muscle,” Biochemical Pharmacology, vol. 59, no. 9, pp. 1077–1089, 2000. View at Publisher · View at Google Scholar · View at Scopus
  22. L. Grasa, M. P. Arruebo, M. A. Plaza, and M. D. Murillo, “The role of tyrosine kinase in prostaglandin E2 and vanadate-evoked contractions in rabbit duodenum in vitro,” Journal of Physiology and Pharmacology, vol. 57, no. 2, pp. 279–289, 2006. View at Scopus
  23. H. E. Kafl and H. A. Elkashef, “Effect of sodium orthovanadate on the urinary bladder rings isolated from normal and hyperglycemic rats,” Pakistan Journal of Pharmaceutical Sciences, vol. 19, no. 3, pp. 195–201, 2006. View at Scopus
  24. L. Zhao, Z. Wang, Y.-C. Ruan, and W.-L. Zhou, “Cellular mechanism underlying the facilitation of contractile response of vas deferens smooth muscle by sodium orthovanadate,” Molecular and Cellular Biochemistry, vol. 366, no. 1-2, pp. 149–157, 2012. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Wijetunge, C. Aalkjaer, M. Schachter, and A. D. Hughes, “Tyrosine kinase inhibitors block calcium channel currents in vascular smooth muscle cells,” Biochemical and Biophysical Research Communications, vol. 189, no. 3, pp. 1620–1623, 1992. View at Publisher · View at Google Scholar · View at Scopus
  26. H. Masui and I. Wakabayashi, “Tyrosine phosphorylation increases Ca2+ sensitivity of vascular smooth muscle contraction,” Life Sciences, vol. 68, no. 4, pp. 363–372, 2000. View at Publisher · View at Google Scholar · View at Scopus
  27. J. Di Salvo, G. Pfitzer, and L. A. Semenchuk, “Protein tyrosine phosphorylation, cellular Ca2+, and Ca2+ sensitivity for contraction of smooth muscle,” Canadian Journal of Physiology and Pharmacology, vol. 72, no. 11, pp. 1434–1439, 1994. View at Scopus
  28. B. J. Adegunloye, X. Su, E. V. Camper, and R. S. Moreland, “Sensitivity of rabbit aorta and mesenteric artery to norepinephrine: role of tyrosine kinases,” European Journal of Pharmacology, vol. 476, no. 3, pp. 201–209, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. T. Hisayama, K. Kida, K. Imada, and H. Moritoki, “Tyrosine kinase may participate in Ca2+ entry for endothelial nitric oxide production,” Japanese Journal of Pharmacology, vol. 67, no. 2, pp. 181–183, 1995. View at Scopus
  30. J. M. Muller, M. J. Davis, and W. M. Chilian, “Coronary arteriolar flow-induced vasodilation signals through tyrosine kinase,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 270, no. 6, part 2, pp. H1878–H1884, 1996. View at Scopus
  31. R. Nakaike, H. Shimokawa, M. K. Owada et al., “Vanadate causes synthesis of endothelium-derived NO via pertussis toxin- sensitive G protein in pigs,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 271, no. 1, part 2, pp. H296–H302, 1996. View at Scopus
  32. S. Sharma, M. Singh, and P. L. Sharma, “Mechanism of attenuation of diabetes mellitus and hypercholesterolemia induced vascular endothelial dysfunction by protein tyrosine phosphatase inhibition,” Vascular Pharmacology, vol. 54, no. 3–6, pp. 80–87, 2011. View at Publisher · View at Google Scholar · View at Scopus
  33. M. H. M. Yousif, I. F. Benter, and S. Akhtar, “The role of tyrosine kinase-mediated pathways in diabetes-induced alterations in responsiveness of rat carotid artery,” Autonomic and Autacoid Pharmacology, vol. 25, no. 2, pp. 69–78, 2005. View at Publisher · View at Google Scholar · View at Scopus
  34. D. I. Shah and M. Singh, “Inhibition of protein tyrosin phosphatase improves vascular endothelial dysfunction,” Vascular Pharmacology, vol. 44, no. 3, pp. 177–182, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. P. B. Furspan, S. Chatterjee, M. D. Mayes, and R. R. Freedman, “Cooling-induced contraction and protein tyrosine kinase activity of isolated arterioles in secondary Raynaud's phenomenon,” Rheumatology, vol. 44, no. 4, pp. 488–494, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. Fetscher, H. Chen, R. F. Schäfers, G. Wambach, G. Heusch, and M. C. Michel, “Modulation of noradrenaline-induced microvascular constriction by protein kinase inhibitors,” Naunyn-Schmiedeberg's Archives of Pharmacology, vol. 363, no. 1, pp. 57–65, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. C. Liu, T. Tazzeo, H. Lippton, and L. J. Janssen, “Role of tyrosine phosphorylation in U46619-induced vasoconstriction of pulmonary vasculature and its modulation by genistein, daidzein, and equol,” Journal of Cardiovascular Pharmacology, vol. 50, no. 4, pp. 441–448, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Tasaki, M. Hori, H. Ozaki, H. Karaki, and I. Wakabayashi, “Difference in signal transduction mechanisms involved in 5-hydroxytryptamine- and U46619-induced vasoconstrictions,” Journal of Smooth Muscle Research, vol. 39, no. 5, pp. 107–117, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Watanabe, M. Doi, K. Sasaki, and A. Ogawa, “Modulatory role of protein tyrosine kinase activation in the receptor- induced contractions of the bovine cerebral artery,” Neurologia Medico-Chirurgica, vol. 38, no. 2, pp. 75–82, 1998. View at Scopus
  40. C. Métais, L. I. Jianyi, L. I. Jian, M. Simons, and F. W. Sellke, “Effects of coronary artery disease on expression and microvascular response to VEGF,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 275, no. 4, pp. H1411–H1418, 1998. View at Scopus
  41. F. W. Sellke, S. Y. Wang, A. Stamler et al., “Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 271, no. 2, pp. H713–H720, 1996. View at Scopus
  42. A. J. LeBlanc, R. D. Shipley, L. S. Kang, and J. M. Muller-Delp, “Age impairs Flk-1 signaling and NO-mediated vasodilation in coronary arterioles,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 295, no. 6, pp. H2280–H2288, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. P. Brownbill, G. C. McKeeman, J. C. Brockelsby, I. P. Crocker, and C. P. Sibley, “Vasoactive and permeability effects of vascular endothelial growth factor-165 in the term in vitro dually perfused human placental lobule,” Endocrinology, vol. 148, no. 10, pp. 4734–4744, 2007. View at Publisher · View at Google Scholar · View at Scopus
  44. E. R. Jacobs, D. Zhu, S. Gruenloh, B. Lopez, and M. Medhora, “VEGF-induced relaxation of pulmonary arteries is mediated by endothelial cytochrome P-450 hydroxylase,” American Journal of Physiology—Lung Cellular and Molecular Physiology, vol. 291, no. 3, pp. L369–L377, 2006. View at Publisher · View at Google Scholar · View at Scopus
  45. M. H. Liu, H. Jin, H. S. Floten, Z. Ren, A. P. Yim, and G. W. He, “Vascular endothelial growth factor-mediated, endothelium-dependent relaxation in human internal mammary artery,” Annals of Thoracic Surgery, vol. 73, no. 3, p. 819, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. W. Wei, Z.-W. Chen, Q. Yang et al., “Vasorelaxation induced by vascular endothelial growth factor in the human internal mammary artery and radial artery,” Vascular Pharmacology, vol. 46, no. 4, pp. 253–259, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. A. N. Carr, M. G. Davis, E. Eby-Wilkens et al., “Tyrosine phosphatase inhibition augments collateral blood flow in a rat model of peripheral vascular disease,” American Journal of Physiology—Heart and Circulatory Physiology, vol. 287, no. 1, pp. H268–H276, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Oshikawa, N. Urao, H. W. Kim et al., “Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice,” PLoS ONE, vol. 5, no. 4, Article ID e10189, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Sugano, K. Tsuchida, and N. Makino, “A protein tyrosine phosphatase inhibitor accelerates angiogenesis in a rat model of hindlimb ischemia,” Journal of Cardiovascular Pharmacology, vol. 44, no. 4, pp. 460–465, 2004. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Wei, H. Jin, Z.-W. Chen, T. F. Zioncheck, A. P. C. Yim, and G.-W. He, “Vascular endothelial growth factor-induced nitric oxide-and PGI 2-dependent relaxation in human internal mammary arteries: a comparative study with KDR and Flt-1 selective mutants,” Journal of Cardiovascular Pharmacology, vol. 44, no. 5, pp. 615–621, 2004. View at Publisher · View at Google Scholar · View at Scopus
  51. B. Li, A. K. Ogasawara, R. Yang et al., “KDR (VEGF receptor 2) is the major mediator for the hypotensive effect of VEGF,” Hypertension, vol. 39, no. 6, pp. 1095–1100, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. H. He, V. J. Venema, X. Gu, R. C. Venema, M. B. Marrero, and R. B. Caldwell, “Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through Flk-1/KDR activation of c-Src,” The Journal of Biological Chemistry, vol. 274, no. 35, pp. 25130–25135, 1999. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Sartelet, M. Decaussin, G. Devouassoux et al., “Expression of vascular endothelial growth factor (VEGF) and its receptors (VEGF-R1 [Flt-1] and VEGF-R2 [KDR/Flk-1]) in tumorlets and in neuroendocrine cell hyperplasia of the lung,” Human Pathology, vol. 35, no. 10, pp. 1210–1217, 2004. View at Publisher · View at Google Scholar · View at Scopus
  54. M. Schmidt, H.-U. Voelker, M. Kapp, J. Dietl, and U. Kammerer, “Expression of VEGFR-1 (Flt-1) in breast cancer is associated with VEGF expression and with node-negative tumour stage,” Anticancer Research, vol. 28, no. 3, pp. 1719–1724, 2008. View at Scopus
  55. J. C. Reubi, A. Fleischmann, B. Waser, and R. Rehmann, “Concomitant vascular GRP-receptor and VEGF-receptor expression in human tumors: molecular basis for dual targeting of tumoral vasculature,” Peptides, vol. 32, no. 7, pp. 1457–1462, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. H. Takahashi and M. Shibuya, “The vascular endothelial growth factor (VEGF)/VEGF receptor system and its role under physiological and pathological conditions,” Clinical Science, vol. 109, no. 3, pp. 227–241, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. H. Huang, J. Held-Feindt, R. Buhl, H. M. Mehdorn, and R. Mentlein, “Expression of VEGF and its receptors in different brain tumors,” Neurological Research, vol. 27, no. 4, pp. 371–377, 2005. View at Publisher · View at Google Scholar · View at Scopus
  58. B. J. Ljungberg, J. Jacobsen, S. H. Rudolfsson, G. Lindh, K. Grankvist, and T. Rasmuson, “Different vascular endothelial growth factor (VEGF), VEGF-receptor 1 and -2 mRNA expression profiles between clear cell and papillary renal cell carcinoma,” BJU International, vol. 98, no. 3, pp. 661–667, 2006. View at Publisher · View at Google Scholar · View at Scopus
  59. J. M. Mehnert, M. M. McCarthy, L. Jilaveanu et al., “Quantitative expression of VEGF, VEGF-R1, VEGF-R2, and VEGF-R3 in melanoma tissue microarrays,” Human Pathology, vol. 41, no. 3, pp. 375–384, 2010. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Pallares, F. Rojo, J. Iriarte, J. Morote, L. I. Armadans, and I. de Torres, “Study of microvessel density and the expression of the angiogenic factors VEGF, bFGF and the receptors Flt-1 and FLK-1 in benign, premalignant and malignant prostate tissues,” Histology and Histopathology, vol. 21, no. 8, pp. 857–865, 2006. View at Scopus
  61. Y. Harada, Y. Ogata, and K. Shirouzu, “Expression of vascular endothelial growth factor and its receptor KDR (kinase domain-containing receptor)/Flk-1 (fetal liver kinase-1) as prognostic factors in human colorectal cancer,” International Journal of Clinical Oncology, vol. 6, no. 5, pp. 221–228, 2001. View at Scopus
  62. N. T. Okita, Y. Yamada, D. Takahari et al., “Vascular endothelial growth factor receptor expression as a prognostic marker for survival in colorectal cancer,” Japanese Journal of Clinical Oncology, vol. 39, no. 9, pp. 595–600, 2009. View at Publisher · View at Google Scholar · View at Scopus
  63. Y. Yin, L.-Y. Cao, W.-Q. Wu, H. Li, Y. Jiang, and H.-F. Zhang, “Blocking effects of siRNA on VEGF expression in human colorectal cancer cells,” World Journal of Gastroenterology, vol. 16, no. 9, pp. 1086–1092, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. D. Wang, D. B. Donner, and R. S. Warren, “Homeostatic modulation of cell surface KDR and Flt1 expression and expression of the vascular endothelial cell growth factor (VEGF) receptor mRNAs by VEGF,” The Journal of Biological Chemistry, vol. 275, no. 21, pp. 15905–15911, 2000. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Ferrero, M. Labalde, N. Fernandez et al., “Response to endothelin-1 in arteries from human colorectal tumours: role of endothelin receptors,” Experimental Biology and Medicine, vol. 233, no. 12, pp. 1602–1607, 2008. View at Publisher · View at Google Scholar · View at Scopus
  66. G. Neufeld, T. Cohen, S. Gengrinovitch, and Z. Poltorak, “Vascular endothelial growth factor (VEGF) and its receptors,” FASEB Journal, vol. 13, no. 1, pp. 9–22, 1999. View at Scopus