About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 549037, 8 pages
Research Article

Stability and Accuracy Assessment of Identification of Traditional Chinese Materia Medica Using DNA Barcoding: A Case Study on Flos Lonicerae Japonicae

1Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
2Agricultural College, Henan University of Science and Technology, Luoyang, Henan 471003, China
3Jiangsu Kanion Pharmaceutical Co. LTD, Lianyungang, Jiangsu 222001, China
4State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, China
5College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
6Beijing University of Chinese Medicine, Beijing 100102, China

Received 28 February 2013; Revised 8 May 2013; Accepted 22 May 2013

Academic Editor: H. M. Häggman

Copyright © 2013 Dianyun Hou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


DNA barcoding is a novel molecular identification method that aids in identifying traditional Chinese materia medica using traditional identification techniques. However, further study is needed to assess the stability and accuracy of DNA barcoding. Flos Lonicerae Japonicae, a typical medicinal flower, is widely used in China, Korea, and other Southeast Asian countries. However, Flos Lonicerae Japonicae and its closely related species have been misused and traded at varying for a wide range of prices. Therefore, Flos Lonicerae Japonicae must be accurately identified. In this study, the ITS2 and psbA-trnH regions were amplified by polymerase chain reaction (PCR). Sequence assembly was performed using CodonCode Aligner V 3.5.4. The intra- versus inter-specific variations were assessed using six metrics and “barcoding gaps.” Species identification was conducted using BLAST1 and neighbor-joining (NJ) trees. Results reveal that ITS2 and psbA-trnH exhibited an average intraspecific divergence of 0.001 and 0, respectively, as well as an average inter-specific divergence of 0.0331 and 0.0161. The identification efficiency of ITS2 and psbA-trnH evaluated using BLAST1 was 100%. Flos Lonicerae Japonicae was formed into one clade through the NJ trees. Therefore, Flos Lonicerae Japonicae can be stably and accurately identified through the ITS2 and psbA-trnH regions, respectively.