About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 549037, 8 pages
http://dx.doi.org/10.1155/2013/549037
Research Article

Stability and Accuracy Assessment of Identification of Traditional Chinese Materia Medica Using DNA Barcoding: A Case Study on Flos Lonicerae Japonicae

1Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences & Peking Union Medical College, No. 151 Malianwa North Road, Haidian District, Beijing 100193, China
2Agricultural College, Henan University of Science and Technology, Luoyang, Henan 471003, China
3Jiangsu Kanion Pharmaceutical Co. LTD, Lianyungang, Jiangsu 222001, China
4State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Lianyungang 222001, China
5College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
6Beijing University of Chinese Medicine, Beijing 100102, China

Received 28 February 2013; Revised 8 May 2013; Accepted 22 May 2013

Academic Editor: H. M. Häggman

Copyright © 2013 Dianyun Hou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Park, S. Kum, C. Wang, S. Y. Park, B. S. Kim, and G. Schuller-Levis, “Anti-inflammatory activity of herbal medicines: inhibition of nitric oxide production and tumor necrosis factor-α secretion in an activated macrophage-like cell line,” American Journal of Chinese Medicine, vol. 33, no. 3, pp. 415–424, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. H. Lu, Y. Jiang, and F. Chen, “Application of preparative high-speed counter-current chromatography for separation of chlorogenic acid from Flos Lonicerae,” Journal of Chromatography A, vol. 1026, no. 1-2, pp. 185–190, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. C. Choi, A. J. Hyun, S. K. Sam, and S. C. Jae, “Antioxidant constituents and a new triterpenoid glycoside from Flos Lonicerae,” Archives of Pharmacal Research, vol. 30, no. 1, pp. 1–7, 2007. View at Scopus
  4. Y. Yuan, L. P. Song, M. H. Li, et al., “Genetic variation and metabolic pathway intricacy govern the active compound content and quality of the Chinese medicinal plant Lonicera japonica thumb,” BMC Genomics, vol. 13, article 195, 2012.
  5. H. Yoo, H. Kang, S. S. Yun, E. Park, and C. Lim, “Anti-angiogenic, antinociceptive and anti-inflammatory activities of Lonicera japonica extract,” Journal of Pharmacy and Pharmacology, vol. 60, no. 6, pp. 779–786, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. Chinese Pharmacopoeia Commission, The Pharmacopoeia of the People’s Republic of China, Volume 1, China Medical Science Press, Beijing, China, 2010.
  7. H. Ko, B. Wei, and W. Chiou, “The effect of medicinal plants used in Chinese folk medicine on RANTES secretion by virus-infected human epithelial cells,” Journal of Ethnopharmacology, vol. 107, no. 2, pp. 205–210, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. J. H. Jin, L. Hyun, S. Y. Kwon, K. H. Son, and H. P. Kim, “Anti-inflammatory activity of the total flavonoid fraction from Broussonetia papyrifera in combination with Lonicera japonica,” Biomolecules and Therapeutics, vol. 18, no. 2, pp. 197–204, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Tian, H. L. Che, D. Ha, Y. P. Wei, and S. Y. Zheng, “Characterization and anti-allergic effect of a polysaccharide from the flower buds of Lonicera japonica,” Carbohydrate Polymers, vol. 90, pp. 1642–1647, 2012.
  10. H. Cao, Z. Liu, P. Steinmann, Y. Mu, H. Luo, and J. Liu, “Chinese herbal medicines for treatment of hand, foot and mouth disease: a systematic review of randomized clinical trials,” European Journal of Integrative Medicine, vol. 4, no. 1, pp. e85–e111, 2012. View at Publisher · View at Google Scholar · View at Scopus
  11. L. Lin, Y. Xu, D. He et al., “A retrospective study on clinical features of and treatment methods for 77 severe cases of SARS,” American Journal of Chinese Medicine, vol. 31, no. 6, pp. 821–839, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. X. H. Li, K. Zhang, J. H. Hu, et al., “Clinical evaluation of integrative Chinese and western medicine in treating SARS,” Chinese Journal of Integrative Medicine, vol. 9, pp. 181–184, 2003.
  13. X. Shang, H. Pan, M. Li, X. Miao, and H. Ding, “Lonicera japonica Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine,” Journal of Ethnopharmacology, vol. 138, no. 1, pp. 1–21, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. Li, K. Wong, W. Chan et al., “Establishment of DNA barcodes for the identification of the botanical sources of the Chinese “cooling” beverage,” Food Control, vol. 25, no. 2, pp. 758–766, 2012. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Chung, F. Cheng, M. Lee, J. Lin, M. Lin, and M. Wang, “Ginkgo biloba leaf extract (EGb761) combined with neuroprotective agents reduces the infarct volumes of gerbil ischemic brain,” American Journal of Chinese Medicine, vol. 34, no. 5, pp. 803–817, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. C. Wang, P. Li, J. Ding, A. Fishbein, and C. Yuan, “Discrimination of Lonicera japonica THUNB. from different geographical origins using restriction fragment length polymorphism analysis,” Biological and Pharmaceutical Bulletin, vol. 30, no. 4, pp. 779–782, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. X. Peng, W. Li, W. Wang, and G. Bai, “Identification of Lonicera japonica by PCR-RFLP and allele-specific diagnostic PCR based on sequences of internal transcribed spacer regions,” Planta Medica, vol. 76, no. 5, pp. 497–499, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. S. Fu, T. Zhang, J. Lü, J. Guo, H. Yuan, and X. Xiao, “Comparison of microcalorimetric fingerprint profiles of Lonicerae Japonicae Flos and Lonicerae Flos,” Yaoxue Xuebao, vol. 46, no. 10, pp. 1251–1256, 2011. View at Scopus
  19. C. Jiang, Y. Yuan, G. M. Liu et al., “EST-SSR identification of Lonicera japonica Thunb,” Acta Pharmaceutica Sinica, vol. 47, pp. 803–810, 2012.
  20. J. J. Li, J. F. Li, J. Y. Li, Y. Q. Zhou, and X. J. Chen, “Identification methods of Lonicera japonica and Lonicera confusa,” Journal of Henan Agricultural Sciences, vol. 40, pp. 134–137, 2011.
  21. P. Li, C. H. Cai, and J. P. Xing, “Preliminary attempt to identify geoherbalism of Flos Lonicerae by sequence divergence of 5S-rRNA gene spacer region,” Chinese Traditional and Herbal Drugs, vol. 32, pp. 834–837, 2001.
  22. P. D. N. Hebert, S. Ratnasingham, and J. R. DeWaard, “Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species,” Proceedings of the Royal Society B, vol. 270, no. 1, pp. S96–S99, 2003. View at Scopus
  23. P. D. N. Hebert, A. Cywinska, S. L. Ball, and J. R. DeWaard, “Biological identifications through DNA barcodes,” Proceedings of the Royal Society B, vol. 270, no. 1512, pp. 313–321, 2003. View at Publisher · View at Google Scholar · View at Scopus
  24. R. Lahaye, M. Van Der Bank, D. Bogarin et al., “DNA barcoding the floras of biodiversity hotspots,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 8, pp. 2923–2928, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. D. L. Erickson, J. Spouge, A. Resch, L. A. Weigt, and W. J. Kress, “DNA barcoding in land plants: developing standards to quantify and maximize success,” Taxon, vol. 57, no. 4, pp. 1304–1316, 2008. View at Scopus
  26. P. M. Hollingsworth, L. L. Forrest, J. L. Spouge et al., “A DNA barcode for land plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, no. 31, pp. 12794–12797, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. S. Chen, H. Yao, J. Han et al., “Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species,” PLoS ONE, vol. 5, no. 1, Article ID e8613, 2010. View at Publisher · View at Google Scholar · View at Scopus
  28. H. Yao, J. Song, C. Liu et al., “Use of ITS2 region as the universal DNA barcode for plants and animals,” PLoS ONE, vol. 5, no. 10, Article ID e13102, 2010. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Luo, S. L. Chen, K. L. Chen et al., “Assessment of candidate plant DNA barcodes using the Rutaceae family,” Science China Life Sciences, vol. 53, no. 6, pp. 701–708, 2010. View at Publisher · View at Google Scholar · View at Scopus
  30. L. Shi, J. Zhang, J. Han et al., “Testing the potential of proposed DNA barcodes for species identification of Zingiberaceae,” Journal of Systematics and Evolution, vol. 49, no. 3, pp. 261–266, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. T. Gao, H. Yao, J. Song, Y. Zhu, C. Liu, and S. Chen, “Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family,” BMC Evolutionary Biology, vol. 10, no. 1, article 324, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. C. Zhang, F. Wang, H. Yan, G. Hao, C. Hu, and X. Ge, “Testing DNA barcoding in closely related groups of Lysimachia L. (Myrsinaceae),” Molecular Ecology Resources, vol. 12, no. 1, pp. 98–108, 2012. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. Liu, L. Zhang, Z. Liu, K. Luo, S. Chen, and K. Chen, “Species identification of Rhododendron (Ericaceae) using the chloroplast deoxyribonucleic acid PsbA-trnH genetic marker,” Pharmacognosy Magazine, vol. 8, no. 29, pp. 29–36, 2012. View at Publisher · View at Google Scholar · View at Scopus
  34. A. Ebihara, J. H. Nitta, and M. Ito, “Molecular species identification with rich floristic sampling: DNA barcoding the pteridophyte flora of Japan,” PLoS ONE, vol. 12, Article ID e15136, 2010. View at Scopus
  35. W. J. Kress, D. L. Erickson, N. G. Swenson, J. Thompson, M. Uriarte, and J. K. Zimmerman, “Advances in the use of DNA barcodes to build a community phylogeny for tropical trees in a Puerto Rican forest dynamics plot,” PloS ONE, vol. 5, no. 11, p. e15409, 2010. View at Scopus
  36. K. M. Pryer, E. Schuettpelz, L. Huiet et al., “DNA barcoding exposes a case of mistaken identity in the fern horticultural trade,” Molecular Ecology Resources, vol. 10, no. 6, pp. 979–985, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. P. D. N. Hebert, E. H. Penton, J. M. Burns, D. H. Janzen, and W. Hallwachs, “Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, no. 41, pp. 14812–14817, 2004. View at Publisher · View at Google Scholar · View at Scopus
  38. S. Ragupathy, S. G. Newmaster, M. Murugesan, and V. Balasubramaniam, “DNA barcoding discriminates a new cryptic grass species revealed in an ethnobotany study by the hill tribes of the Western Ghats in southern India,” Molecular Ecology Resources, vol. 9, no. 1, pp. 164–171, 2009. View at Publisher · View at Google Scholar · View at Scopus
  39. China Plant BOL Group, “Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 49, pp. 19641–19646, 2011. View at Publisher · View at Google Scholar · View at Scopus
  40. M. Miao, A. Warren, W. Song, S. Wang, H. Shang, and Z. Chen, “Analysis of the internal transcribed spacer 2 (ITS2) region of Scuticociliates and related taxa (Ciliophora, Oligohymenophorea) to infer their evolution and phylogeny,” Protist, vol. 159, no. 4, pp. 519–533, 2008. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Schultz and M. Wolf, “ITS2 sequence-structure analysis in phylogenetics: a how-to manual for molecular systematics,” Molecular Phylogenetics and Evolution, vol. 52, no. 2, pp. 520–523, 2009. View at Publisher · View at Google Scholar · View at Scopus
  42. W. J. Kress, K. J. Wurdack, E. A. Zimmer, L. A. Weigt, and D. H. Janzen, “Use of DNA barcodes to identify flowering plants,” Proceedings of the National Academy of Sciences of the United States of America, vol. 102, no. 23, pp. 8369–8374, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. H. Yao, J. Song, X. Ma et al., “Identification of Dendrobium species by a candidate DNA barcode sequence: the chloroplast PsbA-trnH intergenic region,” Planta Medica, vol. 75, no. 6, pp. 667–669, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. Song, H. Yao, Y. Li et al., “Authentication of the family Polygonaceae in Chinese pharmacopoeia by DNA barcoding technique,” Journal of Ethnopharmacology, vol. 124, no. 3, pp. 434–439, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. X. Ma, C. Xie, C. Liu et al., “Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast PsbA-trnH intergenic region,” Biological and Pharmaceutical Bulletin, vol. 33, no. 11, pp. 1919–1924, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. Z. Sun, T. Gao, H. Yao, L. Shi, Y. Zhu, and S. Chen, “Identification of Lonicera japonica and its related species using the DNA barcoding method,” Planta Medica, vol. 77, no. 3, pp. 301–306, 2011. View at Publisher · View at Google Scholar · View at Scopus
  47. C. Koetschan, F. Förster, A. Keller et al., “The ITS2 Database III—sequences and structures for phylogeny,” Nucleic Acids Research, vol. 38, no. 1, pp. D275–D279, 2010. View at Publisher · View at Google Scholar · View at Scopus
  48. K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and S. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. C. P. Meyer and G. Paulay, “DNA barcoding: error rates based on comprehensive sampling,” PLoS Biology, vol. 3, pp. 2229–2238, 2005. View at Scopus
  50. T. Gao, H. Yao, J. Song et al., “Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2,” Journal of Ethnopharmacology, vol. 130, no. 1, pp. 116–121, 2011. View at Publisher · View at Google Scholar · View at Scopus
  51. H. A. Ross, S. Murugan, and W. L. S. Li, “Testing the reliability of genetic methods of species identification via simulation,” Systematic Biology, vol. 57, no. 2, pp. 216–230, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. P. Taberlet, E. Coissac, F. Pompanon et al., “Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding,” Nucleic Acids Research, vol. 35, no. 3, article e14, 2007. View at Publisher · View at Google Scholar · View at Scopus
  53. H. Stockinger, M. Krüger, and A. Schüßler, “DNA barcoding of arbuscular mycorrhizal fungi,” New Phytologist, vol. 187, no. 2, pp. 461–474, 2010. View at Publisher · View at Google Scholar · View at Scopus
  54. X. Pang, J. Song, Y. Zhu, H. Xu, L. Huang, and S. Chen, “Applying plant DNA barcodes for Rosaceae species identification,” Cladistics, vol. 27, no. 2, pp. 165–170, 2011. View at Publisher · View at Google Scholar · View at Scopus
  55. T. Y. Xin, H. Yao, K. Luo, et al., “Stability and accuracy of the identification of Notopterygii Rhizoma et Radix using the ITS/ITS2 barcodes,” Acta Pharmaceutica Sinica, vol. 47, pp. 1098–1105, 2012.
  56. D. Y. Hou, J. Y. Song, H. Yao, et al., “Molecular identification of Corni Fructus and its adulterants by ITS/ITS2 sequences,” Chinese Journal of Natural Medicines, vol. 11, pp. 121–127, 2013.
  57. X. H. Pang, J. Y. Song, H. B. Xu, and H. Yao, “Using ITS2 barcode to identify ephedrae herba,” China Journal of Chinese Materia Medica, vol. 37, pp. 1118–1121, 2012.
  58. I. Álvarez and J. F. Wendel, “Ribosomal ITS sequences and plant phylogenetic inference,” Molecular Phylogenetics and Evolution, vol. 29, no. 3, pp. 417–434, 2003. View at Publisher · View at Google Scholar · View at Scopus
  59. A. W. Coleman, “Pan-eukaryote ITS2 homologies revealed by RNA secondary structure,” Nucleic Acids Research, vol. 35, no. 10, pp. 3322–3329, 2007. View at Publisher · View at Google Scholar · View at Scopus
  60. J. Y. Song, L. C. Shi, D. Z. Li, et al., “Extensive pyrosequencing reveals frequent intra-genomic variations of internal transcribed spacer regions of nuclear ribosomal DNA,” PLoS ONE, vol. 7, Article ID e43971, 2012.