About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 561979, 18 pages
http://dx.doi.org/10.1155/2013/561979
Research Article

The TvLEGU-1, a Legumain-Like Cysteine Proteinase, Plays a Key Role in Trichomonas vaginalis Cytoadherence

1Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida IPN No. 2508, Col. San Pedro Zacatenco, 07360 Mexico City, DF, Mexico
2Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Avenida IPN No. 2508, Col. San Pedro Zacatenco, 07360 Mexico City, DF, Mexico
3Laboratório de Ultraestrutura Celular, Universidade Santa Úrsula, Rua Jornalista Orlando Dantas 36, Botafogo, 22231-010 Rio de Janeiro, RJ, Brazil

Received 31 July 2012; Revised 21 September 2012; Accepted 28 September 2012

Academic Editor: Luis I. Terrazas

Copyright © 2013 Francisco Javier Rendón-Gandarilla et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. D. Petrin, K. Delgaty, R. Bhatt, and G. Garber, “Clinical and microbiological aspects of Trichomonas vaginalis,” Clinical Microbiology Reviews, vol. 11, no. 2, pp. 300–317, 1998. View at Scopus
  2. J. F. Alderete and G. E. Garza, “Specific nature of Trichomonas vaginalis parasitism of host cell surfaces,” Infection and Immunity, vol. 50, no. 3, pp. 701–708, 1985. View at Scopus
  3. J. F. Alderete and G. E. Garza, “Identification and properties of Trichomonas vaginalis proteins involved in cytadherence,” Infection and Immunity, vol. 56, no. 1, pp. 28–33, 1988. View at Scopus
  4. R. Arroyo and J. F. Alderete, “Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells,” Infection and Immunity, vol. 57, no. 10, pp. 2991–2997, 1989. View at Scopus
  5. R. Arroyo and J. F. Alderete, “Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity,” Archives of Medical Research, vol. 26, no. 3, pp. 279–285, 1995. View at Scopus
  6. R. Arroyo, J. Engbring, and J. F. Alderete, “Molecular basis of host epithelial cell recognition by Trichomonas vaginalis,” Molecular Microbiology, vol. 6, no. 7, pp. 853–862, 1992. View at Scopus
  7. M. R. Mendoza-Lopez, C. Becerril-Garcia, L. V. Fattel-Facenda et al., “CP30, a cysteine proteinase involved in Trichomonas vaginalis cytoadherence,” Infection and Immunity, vol. 68, no. 9, pp. 4907–4912, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Hernández, I. Sariego, G. Garber, R. Delgado, O. López, and J. Sarracent, “Monoclonal antibodies against a 62 kDa proteinase of Trichomonas vaginalis decrease parasite cytoadherence to epithelial cells and confer protection in mice,” Parasite Immunology, vol. 26, no. 3, pp. 119–125, 2004. View at Publisher · View at Google Scholar · View at Scopus
  9. J. M. Carlton, R. P. Hirt, J. C. Silva et al., “Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis,” Science, vol. 315, no. 5809, pp. 207–212, 2007. View at Publisher · View at Google Scholar · View at Scopus
  10. K. A. Neale and J. F. Alderete, “Analysis of the proteinases of representative Trichomonas vaginalis isolates,” Infection and Immunity, vol. 58, no. 1, pp. 157–162, 1990. View at Scopus
  11. P. Cuervo, E. Cupolillo, C. Britto et al., “Differential soluble protein expression between Trichomonas vaginalis isolates exhibiting low and high virulence phenotypes,” Journal of Proteomics, vol. 71, no. 1, pp. 109–122, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. J. B. De Jesus, P. Cuervo, M. Junqueira et al., “Application of two-dimensional electrophoresis and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for proteomic analysis of the sexually transmitted parasite Trichomonas vaginalis,” Journal of Mass Spectrometry, vol. 42, no. 11, pp. 1463–1473, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. J. B. De Jesus, P. Cuervo, C. Britto et al., “Cysteine peptidase expression in Trichomonas vaginalis isolates Displaying High- And low-virulence phenotypes,” Journal of Proteome Research, vol. 8, no. 3, pp. 1555–1564, 2009. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Y. Huang, K. Y. Chien, Y. C. Lin et al., “A proteome reference map of Trichomonas vaginalis,” Parasitology Research, vol. 104, no. 4, pp. 927–933, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. L. A. Ramón-Luing, F. J. Rendón-Gandarilla, R. E. Cárdenas-Guerra et al., “Immunoproteomics of the active degradome to identify biomarkers for Trichomonas vaginalis,” Proteomics, vol. 10, no. 3, pp. 435–444, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. D. J. Mallinson, B. C. Lockwood, G. H. Coombs, and M. J. North, “Identification and molecular cloning of four cysteine proteinase genes from the pathogenic protozoon Trichomonas vaginalis,” Microbiology, vol. 140, no. 10, pp. 2725–2735, 1994. View at Scopus
  17. C. R. León-Sicairos, I. Pérez-Martînez, M. E. Álvarez-Sánchez, I. López-Villaseñor, and R. Arroyo, “Two Trichomonas vaginalis loci encoding for distinct cysteine proteinases show a genomic linkage with putative inositol hexakisphosphate kinase (IP6K2) or an ABC transporter gene,” The Journal of Eukaryotic Microbiology, vol. 50, pp. 702–705, 2003. View at Publisher · View at Google Scholar · View at Scopus
  18. C. R. León-Sicairos, J. León-Félix, and R. Arroyo, “Tvcp12: a novel Trichomonas vaginalis cathepsin L-like cysteine proteinase-encoding gene,” Microbiology, vol. 150, no. 5, pp. 1131–1138, 2004. View at Scopus
  19. E. Solano-González, M. E. Alvarez-Sánchez, L. Avila-González, V. H. Rodríguez-Vargas, R. Arroyo, and J. Ortega-López, “Location of the cell-binding domain of CP65, a 65 kDa cysteine proteinase involved in Trichomonas vaginalis cytotoxicity,” International Journal of Biochemistry and Cell Biology, vol. 38, no. 12, pp. 2114–2127, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Solano-González, E. Burrola-Barraza, C. León-Sicairos et al., “The trichomonad cysteine proteinase TVCP4 transcript contains an iron-responsive element,” FEBS Letters, vol. 581, no. 16, pp. 2919–2928, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. C. Torres-Romero and R. Arroyo, “Responsiveness of Trichomonas vaginalis to iron concentrations: evidence for a post-transcriptional iron regulation by an IRE/IRP-like system,” Infection, Genetics and Evolution, vol. 9, no. 6, pp. 1065–1074, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. L. D. L. A. Ramón-Luing, F. J. Rendón-Gandarilla, J. Puente-Rivera, L. Ávila-González, and R. Arroyo, “Identification and characterization of the immunogenic cytotoxic TvCP39 proteinase gene of Trichomonas vaginalis,” International Journal of Biochemistry and Cell Biology, vol. 43, no. 10, pp. 1500–1511, 2011. View at Publisher · View at Google Scholar · View at Scopus
  23. A. J. Barrett and N. D. Rawlings, “Evolutionary lines of cysteine peptidases,” Biological Chemistry, vol. 382, no. 5, pp. 727–733, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. J. C. Mottram, M. J. Helms, G. H. Coombs, and M. Sajid, “Clan CD cysteine peptidases of parasitic protozoa,” Trends in Parasitology, vol. 19, no. 4, pp. 182–187, 2003. View at Publisher · View at Google Scholar · View at Scopus
  25. M. W. Lehker, T. H. Chang, D. C. Dailey, and J. F. Alderete, “Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis,” Journal of Experimental Medicine, vol. 171, no. 6, pp. 2165–2170, 1990. View at Publisher · View at Google Scholar · View at Scopus
  26. J. F. Alderete, D. Provenzano, and M. W. Lehker, “Iron mediates Trichomonas vaginalis resistance to complement lysis,” Microbial Pathogenesis, vol. 19, no. 2, pp. 93–103, 1995. View at Publisher · View at Google Scholar · View at Scopus
  27. D. Provenzano and J. F. Alderete, “Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis,” Infection and Immunity, vol. 63, no. 9, pp. 3388–3395, 1995. View at Scopus
  28. D. C. Dailey, T. H. Chang, and J. F. Alderete, “Characterization of Trichomonas vaginalis haemolysis,” Parasitology, vol. 101, no. 2, pp. 171–175, 1990. View at Scopus
  29. M. E. Alvarez-Sánchez, L. Avila-González, C. Becerril-García, L. V. Fattel-Facenda, J. Ortega-López, and R. Arroyo, “A novel cysteine proteinase (CP65) of Trichomonas vaginalis involved in cytotoxicity,” Microbial Pathogenesis, vol. 28, no. 4, pp. 193–202, 2000. View at Publisher · View at Google Scholar · View at Scopus
  30. M. E. Alvarez-Sánchez, E. Solano-González, C. Yañez-Gómez, and R. Arroyo, “Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis,” Microbes and Infection, vol. 9, no. 14-15, pp. 1597–1605, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. M. E. Alvarez-Sánchez, B. I. Carvajal-Gamez, E. Solano-González et al., “Polyamine depletion down-regulates expression of the Trichomonas vaginalis cytotoxic CP65, a 65-kDa cysteine proteinase involved in cellular damage,” International Journal of Biochemistry and Cell Biology, vol. 40, no. 11, pp. 2442–2451, 2008. View at Publisher · View at Google Scholar · View at Scopus
  32. R. Hernandez-Gutierrez, J. Ortega-López, and R. Arroyo, “A 39-kDa Cysteine Proteinase CP39 from Trichomonas vaginalis, Which Is Negatively Affected by Iron May Be Involved in Trichomonal Cytotoxicity,” The Journal of Eukaryotic Microbiology, vol. 50, supplement 1, pp. 696–698, 2003. View at Publisher · View at Google Scholar · View at Scopus
  33. R. Hernández-Gutiérrez, L. Avila-González, J. Ortega-López, F. Cruz-Talonia, G. Gómez-Gutierrez, and R. Arroyo, “Trichomonas vaginalis: characterization of a 39-kDa cysteine proteinase found in patient vaginal secretions,” Experimental Parasitology, vol. 107, no. 3-4, pp. 125–135, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. U. Sommer, C. E. Costello, G. R. Hayes et al., “Identification of Trichomonas vaginalis cysteine proteases that induce apoptosis in human vaginal epithelial cells,” The Journal of Biological Chemistry, vol. 280, no. 25, pp. 23853–23860, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. S. Kummer, G. R. Hayes, R. O. Gilbert, D. H. Beach, J. J. Lucas, and B. N. Singh, “Induction of human host cell apoptosis by Trichomonas vaginalis cysteine proteases is modulated by parasite exposure to iron,” Microbial Pathogenesis, vol. 44, no. 3, pp. 197–203, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. T. E. Gorrell, “Effect of culture medium iron content on the biochemical composition and metabolism of Trichomonas vaginalis,” Journal of Bacteriology, vol. 161, no. 3, pp. 1228–1230, 1985. View at Scopus
  37. A. Smith and P. Johnson, “Gene expression in the unicellular eukaryote Trichomonas vaginalis,” Research in Microbiology, vol. 162, no. 6, pp. 646–654, 2011. View at Publisher · View at Google Scholar · View at Scopus
  38. J. León-Félix, J. Ortega-López, R. Orozco-Solís, and R. Arroyo, “Two novel asparaginyl endopeptidase-like cysteine proteinases from the protist Trichomonas vaginalis: their evolutionary relationship within the clan CD cysteine proteinases,” Gene, vol. 335, no. 1-2, pp. 25–35, 2004. View at Publisher · View at Google Scholar · View at Scopus
  39. L. S. Diamond, “The establishment of various trichomonads of animals and man in axenic cultures,” The Journal of Parasitology, vol. 43, no. 4, pp. 488–490, 1957.
  40. D. Harlow and E. Lane, Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory, New York, NY, USA, 1988.
  41. P. Meza-Cervantez, A. González-Robles, R. E. Cárdenas-Guerra et al., “Pyruvate: ferredoxin oxidoreductase (PFO) is a surface-associated cell-binding protein in Trichomonas vaginalis and is involved in trichomonal adherence to host cells,” Microbiology, vol. 157, no. 12, pp. 3469–3482, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. V. Moreno-Brito, C. Yáñez-Gómez, P. Meza-Cervantez et al., “A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron,” Cellular Microbiology, vol. 7, no. 2, pp. 245–258, 2005. View at Publisher · View at Google Scholar · View at Scopus
  43. A. Ovat, F. Muindi, C. Fagan et al., “Aza-peptidyl michael acceptor and epoxide inhibitors—potent and selective inhibitors of Schistosoma mansoni and Ixodes ricinus legumains (asparaginyl endopeptidases),” Journal of Medicinal Chemistry, vol. 52, no. 22, pp. 7192–7210, 2009. View at Publisher · View at Google Scholar · View at Scopus
  44. J. W. Ju, H. N. Joo, M. R. Lee et al., “Identification of a serodiagnostic antigen, legumain, by immunoproteomic analysis of excretory-secretory products of Clonorchis sinensis adult worms,” Proteomics, vol. 9, no. 11, pp. 3066–3078, 2009. View at Publisher · View at Google Scholar · View at Scopus
  45. M. W. Lehker, R. Arroyo, and J. F. Alderete, “The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis,” Journal of Experimental Medicine, vol. 174, no. 2, pp. 311–318, 1991. View at Scopus
  46. A. Prado, J. L. R. Arrondo, A. Villena, F. M. Goñi, and J. M. Macarulla, “Membrane-surfactant interactions The effect of triton X-100 on sarcoplasmic reticulum vesicles,” Biochimica et Biophysica Acta, vol. 733, no. 1, pp. 163–171, 1983. View at Scopus
  47. M. Heffer-Lauc, B. Viljetić, K. Vajn, R. L. Schnaar, and G. Lauc, “Effects of detergents on the redistribution of gangliosides and GPI-anchored proteins in brain tissue sections,” Journal of Histochemistry and Cytochemistry, vol. 55, no. 8, pp. 805–812, 2007. View at Publisher · View at Google Scholar · View at Scopus
  48. P. M. Dando, M. Fortunato, L. Smith, C. G. Knight, J. E. McKendrick, and A. J. Barrett, “Pig kidney legumain: an asparaginyl endopeptidase with restricted specificity,” Biochemical Journal, vol. 339, no. 3, pp. 743–749, 1999. View at Publisher · View at Google Scholar · View at Scopus
  49. E. Dall and H. Brandstetter, “Activation of legumain involves proteolytic and conformational events, resulting in a context-and substrate-dependent activity profile,” Acta Crystallographica Section F, vol. 68, no. 1, pp. 24–31, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. J. Lee and M. Bogyo, “Synthesis and evaluation of aza-peptidyl inhibitors of the lysosomal asparaginyl endopeptidase, legumain,” Bioorganic and Medicinal Chemistry Letters, vol. 22, no. 3, pp. 1340–1343, 2012. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Øverbye, F. Sætre, L. K. Hagen, H. T. Johansen, and P. O. Seglen, “Autophagic activity measured in whole rat hepatocytes as the accumulation of a novel BHMT fragment (p10), generated in amphisomes by the asparaginyl proteinase, legumain,” Autophagy, vol. 7, no. 9, pp. 1011–1027, 2011. View at Publisher · View at Google Scholar · View at Scopus
  52. J. M. Chen, M. Fortunato, and A. J. Barrett, “Activation of human prolegumain by cleavage at a C-terminal asparagine residue,” Biochemical Journal, vol. 352, no. 2, pp. 327–334, 2000. View at Publisher · View at Google Scholar · View at Scopus
  53. V. Turk, B. Turk, and D. Turk, “Lysosomal cysteine proteases: facts and opportunities,” The EMBO Journal, vol. 20, no. 17, pp. 4629–4633, 2001. View at Publisher · View at Google Scholar · View at Scopus
  54. A. F. Garcia, M. Benchimol, and J. F. Alderete, “Trichomonas vaginalis polyamine metabolism is linked to host cell adherence and cytotoxicity,” Infection and Immunity, vol. 73, no. 5, pp. 2602–2610, 2005. View at Publisher · View at Google Scholar · View at Scopus
  55. M. Sajid, J. H. McKerrow, E. Hansell et al., “Functional expression and characterization of Schistosoma mansoni cathepsin B and its trans-activation by an endogenous asparaginyl endopeptidase,” Molecular and Biochemical Parasitology, vol. 131, no. 1, pp. 65–75, 2003. View at Publisher · View at Google Scholar · View at Scopus
  56. C. R. Caffrey, J. H. McKerrow, J. P. Salter, and M. Sajid, “Blood “n” guts: an update on schistosome digestive peptidases,” Trends in Parasitology, vol. 20, no. 5, pp. 241–248, 2004. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Horn, M. Nussbaumerová, M. Šanda et al., “Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics,” Chemistry and Biology, vol. 16, no. 10, pp. 1053–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. M. G. Götz, K. E. James, E. Hansell et al., “Aza-peptidyl Michael acceptors. A new class of potent and selective inhibitors of asparaginyl endopeptidases (legumains) from evolutionarily diverse pathogens,” Journal of Medicinal Chemistry, vol. 51, no. 9, pp. 2816–2832, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. M. Yadav, M. L. Dubey, I. Gupta, and N. Malla, “Cysteine proteinase 30 (CP30) and antibody response to CP30 in serum and vaginal washes of symptomatic and asymptomatic Trichomonas vaginalis-infected women,” Parasite Immunology, vol. 29, no. 7, pp. 359–365, 2007. View at Publisher · View at Google Scholar · View at Scopus