About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 563756, 7 pages
http://dx.doi.org/10.1155/2013/563756
Research Article

Monounsaturated Fatty Acids Are Substrates for Aldehyde Generation in Tellurite-Exposed Escherichia coli

1Laboratorio de Microbiología Molecular, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago de Chile, Chile
2Laboratorio de Microbiología y Bionanotecnología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile
3Laboratorio de Bionanotecnología y Microbiología, Centro de Bioinformática y Biología Integrativa (CBIB), Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago de Chile, Chile

Received 30 April 2013; Accepted 9 July 2013

Academic Editor: Kota V. Ramana

Copyright © 2013 Gonzalo A. Pradenas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Rai, T. D. Cole, D. E. Wemmer, and S. Linn, “Localization of Fe2+ at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe2+ and H2O2,” Journal of Molecular Biology, vol. 312, no. 5, pp. 1089–1101, 2001. View at Publisher · View at Google Scholar · View at Scopus
  2. E. R. Stadtman, “Protein oxidation and aging,” Free Radical Research, vol. 40, no. 12, pp. 1250–1258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. N. Ercal, H. Gurer-Orhan, and N. Aykin-Burns, “Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage,” Current Topics in Medicinal Chemistry, vol. 1, no. 6, pp. 529–539, 2001. View at Scopus
  4. D. Bagchi, S. J. Stohs, B. W. Downs, M. Bagchi, and H. G. Preuss, “Cytotoxicity and oxidative mechanisms of different forms of chromium,” Toxicology, vol. 180, no. 1, pp. 5–22, 2002. View at Publisher · View at Google Scholar · View at Scopus
  5. J. M. Pérez, I. L. Calderón, F. A. Arenas, et al., “Bacterial toxicity of potassium tellurite: unveiling an ancient enigma,” PLoS ONE, vol. 2, no. 2, p. e211, 2007.
  6. J. A. Imlay, “Pathways of oxidative damage,” Annual Review of Microbiology, vol. 57, pp. 395–418, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. J. M. Slauch, “How does the oxidative burst of macrophages kill bacteria? Still an open question,” Molecular Microbiology, vol. 80, no. 3, pp. 580–583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. H. Esterbauer, R. J. Schaur, and H. Zollner, “Chemistry and Biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes,” Free Radical Biology and Medicine, vol. 11, no. 1, pp. 81–128, 1991. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Marr and J. Ingraham, “Effect of temperature on the composition of fatty acids in Escherichia coli,” Journal of Bacteriology, vol. 84, no. 6, pp. 1260–1267, 1962.
  10. A. Loidl-Stahlhofen and G. Spiteller, “α-Hydroxyaldehydes, products of lipid peroxidation,” Biochimica et Biophysica Acta, vol. 1211, no. 2, pp. 156–160, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Loidl-Stahlhofen, W. Kern, and G. Spiteller, “Gas chromatographic-electron impact mass spectrometric screening procedure for unknown hydroxyaldehydic lipid peroxidation products after pentafluorobenzyloxime derivatization,” Journal of Chromatography B, vol. 673, no. 1, pp. 1–14, 1995. View at Publisher · View at Google Scholar · View at Scopus
  12. J.-F. Rontani, “Photodegradation of unsaturated fatty acids in senescent cells of phytoplankton: photoproduct structural identification and mechanistic aspects,” Journal of Photochemistry and Photobiology A, vol. 114, no. 1, pp. 37–44, 1998. View at Scopus
  13. G. A. Pradenas, B. A. Paillavil, S. Reyes-Cerpa, J. M. Pérez-Donoso, and C. C. Vásquez, “Reduction of the monounsaturated fatty acid content of Escherichia coli results in increased resistance to oxidative damage,” Microbiology, vol. 158, no. 5, pp. 1279–1283, 2012. View at Publisher · View at Google Scholar · View at Scopus
  14. H. J. Vogel and D. M. Bonner, “Acetylornithinase of Escherichia coli: partial purification and some properties,” The Journal of Biological Chemistry, vol. 218, no. 1, pp. 97–106, 1956. View at Scopus
  15. N. Masaki, M. E. Kyle, and J. L. Farber, “tert-Butyl hydroperoxide kills cultured hepatocytes by peroxidizing membrane lipids,” Archives of Biochemistry and Biophysics, vol. 269, no. 2, pp. 390–399, 1989. View at Scopus
  16. H. Semchyshyn, T. Bagnyukova, K. Storey, and V. Lushchak, “Hydrogen peroxide increases the activities of soxRS regulon enzymes and the levels of oxidized proteins and lipids in Escherichia coli,” Cell Biology International, vol. 29, no. 11, pp. 898–902, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. N. P. Contreras and C. C. Vásquez, “Tellurite-induced carbonylation of the Escherichia coli pyruvate dehydrogenase multienzyme complex,” Archives of Microbiology, vol. 192, no. 11, pp. 969–973, 2010. View at Publisher · View at Google Scholar · View at Scopus
  18. G. D. Johnson, “Correlation of color and constitution. I. 2,4-Dinitrophenylhydrazones,” Journal of the American Chemical Society, vol. 75, no. 11, pp. 2720–2723, 1953. View at Scopus
  19. M. K. Cha, W. C. Kim, C. J. Lim, K. Kim, and I. Kim, “Escherichia coli periplasmic thiol peroxidase acts as lipid hydroperoxide peroxidase and the principal antioxidative function during anaerobic growth,” Journal of Biological Chemistry, vol. 279, no. 10, pp. 8769–8778, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Lovell and W. Markesbery, “Analysis of aldehydic markers of lipid peroxidation in biological tissues by HPLC with fluorescence detection,” in Methods in Biological Oxidative Stress, K. Hensley and R. A. Floyd, Eds., Methods in Pharmacology and Toxicology Series, pp. 17–21, Humana Press, Totowa, NJ, USA, 2003.
  21. J. M. Pérez, F. A. Arenas, G. A. Pradenas, J. M. Sandoval, and C. C. Vásquez, “Escherichia coli YqhD exhibits aldehyde reductase activity and protects from the harmful effect of lipid peroxidation-derived aldehydes,” Journal of Biological Chemistry, vol. 283, no. 12, pp. 7346–7353, 2008. View at Publisher · View at Google Scholar · View at Scopus
  22. D. P. Clark, D. DeMendoza, M. L. Polacco, and J. E. Cronan Jr., “β-Hydroxydecanoyl thio ester dehydrase does not catalyze a rate-limiting step in Escherichia coli unsaturated fatty acid synthesis,” Biochemistry, vol. 22, no. 25, pp. 5897–5902, 1983. View at Scopus
  23. D. W. Grogan and J. E. Cronan, “Cyclopropane ring formation in membrane lipids of bacteria,” Microbiology and Molecular Biology Reviews, vol. 61, no. 4, pp. 429–441, 1997. View at Scopus
  24. K. Magnuson, S. Jackowski, C. O. Rock, and J. E. Cronan Jr., “Regulation of fatty acid biosynthesis in Escherichia coli,” Microbiological Reviews, vol. 57, no. 3, pp. 522–542, 1993. View at Scopus
  25. E. R. Stadtman and R. L. Levine, “Protein oxidation,” Annals of the New York Academy of Sciences, vol. 899, pp. 191–208, 2000. View at Scopus
  26. L. J. Yan, “Analysis of oxidative modification of proteins, chapter 14, unit 14.4,” Current Protocols in Protein Science, 2009. View at Publisher · View at Google Scholar
  27. S. M. Trutko, V. K. Akimenko, N. E. Suzina et al., “Involvement of the respiratory chain of gram-negative bacteria in the reduction of tellurite,” Archives of Microbiology, vol. 173, no. 3, pp. 178–186, 2000. View at Publisher · View at Google Scholar · View at Scopus
  28. P. C. Burcham and F. Fontaine, “Extensive protein carbonylation precedes acrolein-mediated cell death in mouse hepatocytes,” Journal of Biochemical and Molecular Toxicology, vol. 15, no. 6, pp. 309–316, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Pesakhov, R. Benisty, N. Sikron et al., “Effect of hydrogen peroxide production and the Fenton reaction on membrane composition of Streptococcus pneumoniae,” Biochimica et Biophysica Acta, vol. 1768, no. 3, pp. 590–597, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. F. A. Arenas, W. A. Díaz, C. A. Leal, J. M. Pérez-Donoso, J. A. Imlay, and C. C. Vásquez, “The Escherichia coli btuE gene, encodes a glutathione peroxidase that is induced under oxidative stress conditions,” Biochemical and Biophysical Research Communications, vol. 398, no. 4, pp. 690–694, 2010. View at Publisher · View at Google Scholar · View at Scopus
  31. P. Echave, J. Tamarit, E. Cabiscol, and J. Ros, “Novel antioxidant role of alcohol dehydrogenase E from Escherichia coli,” Journal of Biological Chemistry, vol. 278, no. 32, pp. 30193–30198, 2003. View at Publisher · View at Google Scholar · View at Scopus
  32. R. T. Holman, “Autoxidation of fats and related substances,” Progress in the Chemistry of Fats and Other Lipids C, vol. 2, pp. 51–98, 1954. View at Scopus