About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 565431, 15 pages
http://dx.doi.org/10.1155/2013/565431
Research Article

Sensitivity of Rabbit Ventricular Action Potential and Ca2+ Dynamics to Small Variations in Membrane Currents and Ion Diffusion Coefficients

1Department of Bioengineering, PFBH 241, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0412, USA
2Faculty of Information Technology, Monash University, Clayton, VIC 3800, Australia

Received 28 April 2013; Accepted 19 August 2013

Academic Editor: Jeffrey J. Saucerman

Copyright © 2013 Yuan Hung Lo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. T. R. Shannon, F. Wang, J. Puglisi, C. Weber, and D. M. Bers, “A mathematical treatment of integrated Ca dynamics within the ventricular myocyte,” Biophysical Journal, vol. 87, no. 5, pp. 3351–3371, 2004.
  2. T. R. Shannon, F. Wang, and D. M. Bers, “Regulation of cardiac sarcoplasmic reticulum Ca release by luminal [Ca] and altered gating assessed with a mathematical model,” Biophysical Journal, vol. 89, no. 6, pp. 4096–4110, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. J. L. Puglisi and D. M. Bers, “LabHEART: an interactive computer model of rabbit ventricular myocyte ion channels and Ca transport,” American Journal of Physiology: Cell Physiology, vol. 281, no. 6, pp. C2049–C2060, 2001. View at Scopus
  4. A. Mahajan, Y. Shiferaw, D. Sato et al., “A rabbit ventricular action potential model replicating cardiac dynamics at rapid heart rates,” Biophysical Journal, vol. 94, no. 2, pp. 392–410, 2008. View at Publisher · View at Google Scholar · View at Scopus
  5. A. Mahajan, D. Sato, Y. Shiferaw et al., “Modifying L-type calcium current kinetics: consequences for cardiac excitation and arrhythmia dynamics,” Biophysical Journal, vol. 94, no. 2, pp. 411–423, 2008. View at Publisher · View at Google Scholar · View at Scopus
  6. O. V. Aslanidi, R. N. Sleiman, M. R. Boyett, J. C. Hancox, and H. Zhang, “Ionic mechanisms for electrical heterogeneity between rabbit purkinje fiber and ventricular cells,” Biophysical Journal, vol. 98, no. 11, pp. 2420–2431, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. S. Morotti, E. Grandi, A. Summa, K. S. Ginsburg, and D. M. Bers, “Theoretical study of L-type Ca2+ current inactivation kinetics during action potential repolarization and early afterdepolarizations,” The Journal of Physiology, vol. 590, part 18, pp. 4465–4481, 2012. View at Publisher · View at Google Scholar
  8. M. S. Jafri, J. J. Rice, and R. L. Winslow, “Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load,” Biophysical Journal, vol. 74, no. 3, pp. 1149–1168, 1998. View at Scopus
  9. L. Romero, B. Carbonell, B. Trenor, B. Rodríguez, J. Saiz, and J. M. Ferrero, “Systematic characterization of the ionic basis of rabbit cellular electrophysiology using two ventricular models,” Progress in Biophysics and Molecular Biology, vol. 107, no. 1, pp. 60–73, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. M. B. Cannell and D. G. Allen, “Model of calcium movements during activation in the sarcomere of frog skeletal muscle,” Biophysical Journal, vol. 45, no. 5, pp. 913–925, 1984. View at Scopus
  11. G. A. Langer and A. Peskoff, “Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell,” Biophysical Journal, vol. 70, no. 3, pp. 1169–1182, 1996. View at Scopus
  12. A. Michailova, F. DelPrincipe, M. Egger, and E. Niggli, “Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum,” Biophysical Journal, vol. 83, no. 6, pp. 3134–3151, 2002. View at Scopus
  13. S. Lu, A. Michailova A, J. J. Saucerman, et al., “Multi-scale modeling in rodent ventricular myocytes: contributions of structural and functional heterogeneities to excitation-contraction coupling,” IEEE Engineering in Medicine and Biology Magazine, vol. 28, no. 2, pp. 46–57, 2009. View at Publisher · View at Google Scholar
  14. L. T. Izu, S. A. Means, J. N. Shadid, Y. Chen-Izu, and C. W. Balke, “Interplay of ryanodine receptor distribution and calcium dynamics,” Biophysical Journal, vol. 91, no. 1, pp. 95–112, 2006. View at Publisher · View at Google Scholar · View at Scopus
  15. S. Means, A. J. Smith, J. Shepherd et al., “Reaction diffusion modeling of calcium dynamics with realistic ER geometry,” Biophysical Journal, vol. 91, no. 2, pp. 537–557, 2006. View at Publisher · View at Google Scholar · View at Scopus
  16. Y. Cheng, Z. Yu, M. Hoshijima et al., “Numerical analysis of Ca2+ signaling in rat ventricular myocytes with realistic transverse-axial tubular geometry and inhibited sarcoplasmic reticulum,” PLoS Computational Biology, vol. 6, no. 10, Article ID 1000972, 2010. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Hatano, J.-I. Okada, T. Washio, T. Hisada, and S. Sugiura, “A three-dimensional simulation model of cardiomyocyte integrating excitation-contraction coupling and metabolism,” Biophysical Journal, vol. 101, no. 11, pp. 2601–2610, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. A. Hatano, J.-I. Okada, T. Hisada, and S. Sugiura, “Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes,” Journal of Biomechanics, vol. 45, no. 5, pp. 815–823, 2012. View at Publisher · View at Google Scholar · View at Scopus
  19. J. E. Hake, A. G. Edwards, Z. Yu, et al., “Modeling cardiac calcium sparks in a three-dimensional reconstruction of a calcium release unit,” The Journal of Physiology, vol. 590, no. 18, pp. 4403–4422, 2012. View at Publisher · View at Google Scholar
  20. P. M. Kekenes-Huskey, Y. Cheng, J. E. Hake, et al., “Modeling effects of L-type Ca2+ current and Na+-Ca2+ exchanger on Ca2+ trigger flux in rabbit myocytes with realistic T-tubule geometries,” Frontiers in Physiology, vol. 3, article 351, 2012. View at Publisher · View at Google Scholar
  21. M. Fink and D. Noble, “Markov models for ion channels: versatility versus identifiability and speed,” Philosophical Transactions of the Royal Society A, vol. 367, no. 1896, pp. 2161–2179, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. E. A. Sobie, “Parameter sensitivity analysis in electrophysiological models using multivariable regression,” Biophysical Journal, vol. 96, no. 4, pp. 1264–1274, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. M. D. Moris, “Factorial sampling plans for preliminary computational experiments,” Technometrics, vol. 33, pp. 161–174, 1991.
  24. D. Abramson, R. Sosic, J. Giddy, and B. Hall, “Nimrod: a tool for performing parametised simulations using distributed workstations,” in Proceedings of the 4th IEEE International Symposium on High Performance Distributed Computing (HPDC '95), pp. 112–121, Pentagon City, Va, USA, August 1995. View at Scopus
  25. H. Abdi, “Partial least squares (PLS) regression,” in Encyclopedia of Measurements and Statistics, N. J. Salkind, Ed., pp. 740–744, Sage, Thousand Oaks, Calif, USA, 2007.
  26. D. Abramson, J. Giddy, and L. Kotler, “High performance parametric modeling with Nimrod/G: killer application for the global grid?” in Proceedings of the 14th International Parallel and Distributed Processing Symposium (IPDPS '00), pp. 520–528, Cancun, Mexico, May 2000. View at Publisher · View at Google Scholar
  27. D. Abramson, A. Lewis, and T. Peachey, “Nimrod/O: a tool for automatic design optimization,” in Proceedings of the 4th International Conference on Algorithms & Architectures for Parallel Processing (ICA3PP '00), World Scientific, Hong Kong, December 2000. View at Publisher · View at Google Scholar
  28. T. C. Peachey, N. T. Diamond, D. A. Abramson, W. Sudholt, A. Michailova, and S. Amirriazi, “Fractional factorial design for parameter sweep experiments using Nimrod/E,” Scientific Programming, vol. 16, no. 2-3, pp. 217–230, 2008.
  29. H. R. Lu, E. Vlaminckx, and D. J. Gallacher, “Choice of cardiac tissue in vitro plays an important role in assessing the risk of drug-induced cardiac arrhythmias in human: beyond QT prolongation,” Journal of Pharmacological and Toxicological Methods, vol. 57, no. 1, pp. 1–8, 2008. View at Publisher · View at Google Scholar · View at Scopus
  30. C. Sims, S. Reisenweber, P. C. Viswanathan, B.-R. Choi, W. H. Walker, and G. Salama, “Sex, age, and regional differences in L-type calcium current are important determinants of arrhythmia phenotype in rabbit hearts with drug-induced long QT type 2,” Circulation Research, vol. 102, no. 9, pp. e86–e100, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. A. Tóth, L. Kiss, A. Varró, and P. P. Nánási, “Potential therapeutic effects of Na+/Ca2+ exchanger inhibition in cardiac diseases,” Current Medicinal Chemistry, vol. 16, no. 25, pp. 3294–3321, 2009.
  32. H. K. Ranu, C. M. N. Terracciano, K. Davia et al., “Effects of Na+/Ca2+-exchanger overexpression on excitation-contraction coupling in adult rabbit ventricular myocytes,” Journal of Molecular and Cellular Cardiology, vol. 34, no. 4, pp. 389–400, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. T. Seidler, S. L. W. Miller, C. M. Loughrey et al., “Effects of adenovirus-mediated sorcin overexpression on excitation-contraction coupling in isolated rabbit cardiomyocytes,” Circulation Research, vol. 93, no. 2, pp. 132–139, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. W. Schillinger, P. M. L. Janssen, S. Emami et al., “Impaired contractile performance of cultured rabbit ventricular myocytes after adenoviral gene transfer of Na+-Ca2+ exchanger,” Circulation Research, vol. 87, no. 7, pp. 581–587, 2000. View at Scopus
  35. A. S. Farkas, K. Acsai, N. Nagy et al., “Na+/Ca2+ exchanger inhibition exerts a positive inotropic effect in the rat heart, but fails to influence the contractility of the rabbit heart,” British Journal of Pharmacology, vol. 154, no. 1, pp. 93–104, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. D. Guo, J. Zhou, X. Zhao et al., “L-type calcium current recovery versus ventricular repolarization: preserved membrane-stabilizing mechanism for different QT intervals across species,” Heart Rhythm, vol. 5, no. 2, pp. 271–279, 2008. View at Publisher · View at Google Scholar · View at Scopus
  37. C. L. Lawrence, M. H. Bridgland-Taylor, C. E. Pollard, T. G. Hammond, and J.-P. Valentin, “A rabbit Langendorff heart proarrhythmia model: predictive value for clinical identification of Torsades de Pointes,” British Journal of Pharmacology, vol. 149, no. 7, pp. 845–860, 2006. View at Publisher · View at Google Scholar · View at Scopus
  38. R. Sah, R. J. Ramirez, G. Y. Oudit et al., “Regulation of cardiac excitation-contraction coupling by action potential repolarization: role of the transient outward potassium current (Ito),” Journal of Physiology, vol. 546, no. 1, pp. 5–18, 2003. View at Publisher · View at Google Scholar · View at Scopus
  39. K. W. Linz and R. Meyer, “Profile and kinetics of L-type calcium current during the cardiac ventricular action potential compared in guinea-pigs, rats and rabbits,” Pflügers Archiv, vol. 439, no. 5, pp. 588–599, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. D. R. L. Scriven, P. Dan, and E. D. W. Moore, “Distribution of proteins implicated in excitation-contraction coupling in rat ventricular myocytes,” Biophysical Journal, vol. 79, no. 5, pp. 2682–2691, 2000. View at Scopus
  41. C. Gershome, E. Lin, H. Kashihara, L. Hove-Madsen, and G. F. Tibbits, “Colocalization of voltage-gated Na+ channels with the Na+/Ca2+ exchanger in rabbit cardiomyocytes during development,” American Journal of Physiology: Heart and Circulatory Physiology, vol. 300, no. 1, pp. H300–H311, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. F. B. Sachse, N. S. Torres, E. Savio-Galimberti et al., “Subcellular structures and function of myocytes impaired during heart failure are restored by cardiac resynchronization therapy,” Circulation Research, vol. 110, no. 4, pp. 588–597, 2012. View at Publisher · View at Google Scholar · View at Scopus
  43. A. C. Zygmunt and W. R. Gibbons, “Calcium-activated chloride current in rabbit ventricular myocytes,” Circulation Research, vol. 68, no. 2, pp. 424–437, 1991. View at Scopus
  44. S. Kawano, Y. Hirayama, and M. Hiraoka, “Activation mechanism of Ca2+-sensitive transient outward current in rabbit ventricular myocytes,” Journal of Physiology, vol. 486, no. 3, pp. 593–604, 1995. View at Scopus
  45. J. L. Puglisi, W. Yuan, J. W. Bassani, and D. M. Bers, “Ca2+ influx through Ca2+ channels in rabbit ventricular myocytes during action potential clamp: influence of temperature,” Circulation Research, vol. 85, no. 6, pp. e7–e16, 1999. View at Scopus
  46. M. Pásek, J. Šimurda, and C. H. Orchard, “Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte,” European Biophysics Journal, vol. 41, no. 6, pp. 491–503, 2012. View at Publisher · View at Google Scholar
  47. R. K. Dash, F. Qi, and D. A. Beard, “A biophysically based mathematical model for the kinetics of mitochondrial calcium uniporter,” Biophysical Journal, vol. 96, no. 4, pp. 1318–1332, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. R. K. Pradhan, D. A. Beard, and R. K. Dash, “A biophysically based mathematical model for the kinetics of mitochondrial Na+-Ca2+ antiporter,” Biophysical Journal, vol. 98, no. 2, pp. 218–230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. S. Cortassa and M. A. Aon, “Computational modeling of mitochondrial function,” Methods in Molecular Biology, vol. 810, pp. 311–326, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. E. N. Dedkova and L. A. Blatter, “Measuring mitochondrial function in intact cardiac myocytes,” Journal of Molecular and Cellular Cardiology, vol. 52, no. 1, pp. 48–61, 2012. View at Publisher · View at Google Scholar · View at Scopus