About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 570158, 9 pages
http://dx.doi.org/10.1155/2013/570158
Research Article

Sex-Associated Expression of Co-Stimulatory Molecules CD80, CD86, and Accessory Molecules, PDL-1, PDL-2 and MHC-II, in F480+ Macrophages during Murine Cysticercosis

1Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP 70228, 04510 México, DF, Mexico
2Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 México, DF, Mexico
3Unidad de Biomedicina, Facultad de Estudios Superiores-Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios No. 1 Los Reyes Iztacala, 54090 Tlalnepantla de Baz, MEX, Mexico

Received 31 August 2012; Revised 1 November 2012; Accepted 15 November 2012

Academic Editor: Miriam Rodríguez-Sosa

Copyright © 2013 Cristián Togno-Peirce et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Satoskar and J. Alexander, “Sex-determined susceptibility and differential IFN-γ and TNF-α mRNA expression in DBA/2 mice infected with Leishmania mexicana,” Immunology, vol. 84, no. 1, pp. 1–4, 1995. View at Scopus
  2. O. Liesenfeld, T. A. Nguyen, C. Pharke, and Y. Suzuki, “Importance of gender and sex hormones in regulation of susceptibility of the small intestine to peroral infection with Toxoplasma gondii tissue cysts,” Journal of Parasitology, vol. 87, no. 6, pp. 1491–1493, 2001. View at Scopus
  3. K. Nava-Castro, R. Hernández-Bello, S. Muñiz-Hernández, I. Camacho-Arroyo, and J. Morales-Montor, “Sex steroids, immune system, and parasitic infections: facts and hypotheses,” Annals of the New York Academy of Sciences, vol. 1262, no. 1, pp. 16–26, 2012. View at Publisher · View at Google Scholar
  4. R. Poulin, “Helminth growth in vertebrate hosts: does host sex matter?” International Journal for Parasitology, vol. 26, no. 11, pp. 1311–1315, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. H. O. Besedovsky and A. del Rey, “Immune-neuro-endocrine interactions: facts and hypotheses,” Endocrine Reviews, vol. 17, no. 1, pp. 64–102, 1996. View at Publisher · View at Google Scholar · View at Scopus
  6. J. Morales-Montor, S. Baig, R. Mitchell, K. Deway, C. Hallal-Calleros, and R. T. Damian, “Immunoendocrine interactions during chronic cysticercosis determine male mouse feminization: role of IL-6,” Journal of Immunology, vol. 167, no. 8, pp. 4527–4533, 2001. View at Scopus
  7. J. Morales-Montor, G. Escobedo, J. A. Vargas-Villavicencio, and C. Larralde, “The neuroimmunoendocrine network in the complex host-parasite relationship during murine cysticercosis,” Current Topics in Medicinal Chemistry, vol. 8, no. 5, pp. 400–407, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. K. L. Culbreth, G. W. Esch, and R. E. Kühn, “Growth and development of larval Taenia crassiceps (Cestoda). III. The relationship between larval biomass and the uptake and incorporation of 14C-leucine,” Experimental Parasitology, vol. 32, no. 2, pp. 272–281, 1972. View at Scopus
  9. R. S. Freeman, “Studies on responses of intermediate host to infection with Taenia crassiceps (Zeder, 1800) (Cestoda),” Canadian Journal of Zoology, vol. 42, no. 3, pp. 367–385, 1964. View at Scopus
  10. E. Sciutto, G. Fragoso, and C. Larralde, “Taenia crassiceps as a model for Taenia solium and the S3Pvac vaccine,” Parasite Immunology, vol. 33, no. 1, pp. 79–80, 2011. View at Publisher · View at Google Scholar · View at Scopus
  11. G. Fragoso, G. Meneses, E. Sciutto, A. Fleury, and C. Larralde, “Preferential growth of Taenia crassiceps cysticerci in female mice holds across several laboratory mice strains and parasite lines,” Journal of Parasitology, vol. 94, no. 2, pp. 551–553, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. L. I. Terrazas, R. Bojalil, T. Govezensky, and C. Larralde, “Shift from an early protective TH1-type immune response to a late permissive TH2-type response in murine cysticercosis (Taenia crassiceps),” Journal of Parasitology, vol. 84, no. 1, pp. 74–81, 1998. View at Publisher · View at Google Scholar · View at Scopus
  13. L. I. Terrazas, R. Bojalil, T. Govezensky, and C. Larraide, “A role for 17-β-estradiol in immunoendocrine regulation of murine cysticercosis (Taenia crassiceps),” Journal of Parasitology, vol. 80, no. 4, pp. 563–568, 1994. View at Scopus
  14. L. Huerta, L. I. Terrazas, E. Sciutto, and C. Larralde, “Immunological mediation of gonadal effects on experimental murine cysticercosis caused by Taenia crassiceps metacestodes,” Journal of Parasitology, vol. 78, no. 3, pp. 471–476, 1992. View at Publisher · View at Google Scholar · View at Scopus
  15. J. Morales-Montor, S. Baig, C. Hallal-Calleros, and R. T. Damian, “Taenia crassiceps: androgen reconstitution of the host leads to protection during cysticercosis,” Experimental Parasitology, vol. 100, no. 4, pp. 209–216, 2002. View at Publisher · View at Google Scholar · View at Scopus
  16. P. J. Murray and T. A. Wynn, “Protective and pathogenic functions of macrophage subsets,” Nature Reviews Immunology, vol. 11, no. 11, pp. 723–737, 2011. View at Publisher · View at Google Scholar
  17. B. Salomon and J. A. Bluestone, “Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation,” Annual Review of Immunology, vol. 19, no. 1, pp. 225–252, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. A. N. Schweitzer and A. H. Sharpe, “Studies using antigen-presenting cells lacking expression of both B7-1 (CD80) and B7-2 (CD86) show distinct requirements for B7 molecules during priming versus restimulation of Th2 but not Th1 cytokine production,” Journal of Immunology, vol. 161, no. 6, pp. 2762–2771, 1998. View at Scopus
  19. L. I. Terrazas, D. Montero, C. A. Terrazas, J. L. Reyes, and M. Rodríguez-Sosa, “Role of the programmed Death-1 pathway in the suppressive activity of alternatively activated macrophages in experimental cysticercosis,” International Journal for Parasitology, vol. 35, no. 13, pp. 1349–1358, 2005. View at Publisher · View at Google Scholar · View at Scopus
  20. S. J. Jenkins and J. E. Allen, “Similarity and diversity in macrophage activation by nematodes, trematodes, and cestodes,” Journal of Biomedicine & Biotechnology, vol. 2010, Article ID 262609, 14 pages, 2010. View at Publisher · View at Google Scholar · View at Scopus
  21. A. Sica and A. Mantovani, “Macrophage plasticity and polarization: in vivo veritas,” Journal of Clinical Investigation, vol. 122, no. 3, pp. 787–795, 2012. View at Publisher · View at Google Scholar
  22. M. Subramanian and C. Shaha, “Up-regulation of Bcl-2 through ERK phosphorylation is associated with human macrophage survival in an estrogen microenvironment,” Journal of Immunology, vol. 179, no. 4, pp. 2330–2338, 2007. View at Scopus
  23. C. E. Routley and G. S. Ashcroft, “Effect of estrogen and progesterone on macrophage activation during wound healing,” Wound Repair and Regeneration, vol. 17, no. 1, pp. 42–50, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Muñoz-Cruz, C. Togno-Pierce, and J. Morales-Montor, “Non-reproductive effects of sex steroids: their immunoregulatory role,” Current Topics in Medicinal Chemistry, vol. 11, no. 13, pp. 1714–1727, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. K. Ahmadi and A. B. McCruden, “Macrophage may responses to androgen via its receptor,” Medical Science Monitor, vol. 12, no. 1, pp. BR15–BR20, 2006. View at Scopus
  26. G. S. Ashcroft and S. J. Mills, “Androgen receptor-mediated inhibition of cutaneous wound healing,” Journal of Clinical Investigation, vol. 110, no. 5, pp. 615–624, 2002. View at Publisher · View at Google Scholar · View at Scopus
  27. K. N. Khan, H. Masuzaki, A. Fujishita et al., “Estrogen and progesterone receptor expression im macrophages and regulation of hepatocyte growth factor by ovarian steroids in women with endometriosis,” Human Reproduction, vol. 20, no. 7, pp. 2004–2013, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. Y. Wang, L. Wang, J. Zhao, and Z. Qiao, “Estrogen, but not testosterone, down-regulates cytokine production in nicotine-induced murine macrophage,” Methods and Findings in Experimental and Clinical Pharmacology, vol. 27, no. 5, pp. 311–316, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Larralde, J. Morales, I. Terrazas, T. Govezensky, and M. C. Romano, “Sex hormone changes induced by the parasite lead to feminization of the male host in murine Taenia crassiceps cysticercosis,” Journal of Steroid Biochemistry and Molecular Biology, vol. 52, no. 6, pp. 575–580, 1995. View at Publisher · View at Google Scholar · View at Scopus
  30. E. Sciutto, G. Fragoso, M. L. Diaz et al., “Murine Taenia crassiceps cysticercosis: H-2 complex and sex influence on susceptibility,” Parasitology Research, vol. 77, no. 3, pp. 243–246, 1991. View at Scopus
  31. R. Bojalil, L. I. Terrazas, T. Govezensky, E. Sciutto, and C. Larralde, “Thymus-related cellular immune mechanisms in sex-associated resistance to experimental murine cysticercosis (Taenia crassiceps),” Journal of Parasitology, vol. 79, no. 3, pp. 384–389, 1993. View at Scopus
  32. J. E. Allen and P. Loke, “Divergent roles for macrophages in lymphatic filariasis,” Parasite Immunology, vol. 23, no. 7, pp. 345–352, 2001. View at Publisher · View at Google Scholar · View at Scopus
  33. H. S. Goodridge, E. H. Wilson, W. Harnett, C. C. Campbell, M. M. Harnett, and F. Y. Liew, “Modulation of macrophage cytokine production by ES-62, a secreted product of the filarial nematode Acanthocheilonema viteae,” Journal of Immunology, vol. 167, no. 2, pp. 940–945, 2001. View at Scopus
  34. M. Rodríguez-Sosa, A. R. Satoskar, J. R. David, and L. I. Terrazas, “Altered T helper responses in CD40 and interleukin-12 deficient mice reveal a critical role for Th1 responses in eliminating the helminth parasite Taenia crassiceps,” International Journal for Parasitology, vol. 33, no. 7, pp. 703–711, 2003. View at Publisher · View at Google Scholar · View at Scopus
  35. M. Rodríguez-Sosa, A. R. Satoskar, R. Calderón et al., “Chronic helminth infection induces alternatively activated macrophages expressing high levels of CCR5 with low interleukin-12 production and Th2-biasing ability,” Infection and Immunity, vol. 70, no. 7, pp. 3656–3664, 2002. View at Publisher · View at Google Scholar · View at Scopus
  36. S. C. Gilliver, J. J. Ashworth, S. J. Mills, M. J. Hardman, and G. S. Ashcroft, “Androgens modulate the inflammatory response during acute wound healing,” Journal of Cell Science, vol. 119, no. 4, pp. 722–732, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. T. C. Chao, H. H. Chao, M. F. Chen, J. A. Greager, and R. J. Walter, “Female sex hormones modulate the function of LPS-treated macrophages,” The American Journal of Reproductive Immunology, vol. 44, no. 5, pp. 310–318, 2000. View at Scopus
  38. H. Huang, J. He, Y. Yuan et al., “Opposing effects of estradiol and progesterone on the oxidative stress-induced production of chemokine and proinflammatory cytokines in murine peritoneal macrophages,” Journal of Medical Investigation, vol. 55, no. 1-2, pp. 133–141, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. F. Gay-Andrieu, G. J. N. Cozon, J. Ferrandiz, and F. Peyron, “Progesterone fails to modulate Toxoplasma gondii replication in the RAW 264.7 murine macrophage cell line,” Parasite Immunology, vol. 24, no. 4, pp. 173–178, 2002. View at Publisher · View at Google Scholar · View at Scopus