About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 572081, 7 pages
http://dx.doi.org/10.1155/2013/572081
Clinical Study

Higher Plasma Pyridoxal Phosphate Is Associated with Increased Antioxidant Enzyme Activities in Critically Ill Surgical Patients

1The Intensive Care Unit, Critical Care and Respiratory Therapy, Taichung Veterans General Hospital, Department of Nursing, HungKuang University, Taichung, Taiwan
2Department of Nutritional Science, Toko University, Chiayi, Taiwan
3Nutrition Section, Tung’s Taichung MetroHarbor Hospital, Taichung, Taiwan
4School of Nutrition, Chung Shan Medical University, Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan

Received 4 April 2013; Accepted 15 May 2013

Academic Editor: Stephen C. Land

Copyright © 2013 Chien-Hsiang Cheng et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. P. Bilski, M. Y. Li, M. Ehrenshaft, M. E. Daub, and C. F. Chignell, “Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants,” Photochemistry and Photobiology, vol. 71, no. 2, pp. 129–134, 2000.
  2. K. Kannan and S. K. Jain, “Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes,” Free Radical Biology and Medicine, vol. 36, no. 4, pp. 423–428, 2004. View at Publisher · View at Google Scholar · View at Scopus
  3. M. M. Mahfouz and F. A. Kummerow, “Vitamin C or Vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats,” The International Journal of Biochemistry & Cell Biology, vol. 36, no. 10, pp. 1919–1932, 2004. View at Scopus
  4. H. F. Goode, H. C. Cowley, B. E. Walker, P. D. Howdle, and N. R. Webster, “Decreased antioxidant status and increased lipid peroxidation in patients with septic shock and secondary organ dysfunction,” Critical Care Medicine, vol. 23, no. 4, pp. 646–651, 1995. View at Scopus
  5. T. Motoyama, K. Okamoto, I. Kukita, M. Hamaguchi, Y. Kinoshita, and H. Ogawa, “Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome,” Critical Care Medicine, vol. 31, no. 4, pp. 1048–1052, 2003. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. C. Huang, P. H. Lan, C. H. Cheng, B. J. Lee, and M. N. Kan, “Vitamin B6 intakes and status of mechanically ventilated critically ill patients in Taiwan,” European Journal of Clinical Nutrition, vol. 56, no. 5, pp. 387–392, 2002. View at Publisher · View at Google Scholar · View at Scopus
  7. Y. C. Huang, H. H. Chang, S. C. Huang et al., “Plasma pyridoxal 5′-phosphate is a significant indicator of immune responses in the mechanically ventilated critically ill,” Nutrition, vol. 21, no. 7-8, pp. 779–785, 2005. View at Publisher · View at Google Scholar · View at Scopus
  8. S. C. Vir and A. H. G. Love, “Vitamin B6 status of the hospitalized aged,” The American Journal of Clinical Nutrition, vol. 31, no. 8, pp. 1383–1391, 1978.
  9. J. A. Louw, A. Werbeck, M. E. J. Louw, T. J. V. W. Kotze, R. Cooper, and D. Labadarios, “Blood vitamin concentrations during the acute-phase response,” Critical Care Medicine, vol. 20, no. 7, pp. 934–941, 1992. View at Scopus
  10. P. Pfitzenmeyer, J. C. Guilland, and P. D'Athis, “Vitamin B6 and vitamin C status in elderly patients with infections during hospitalization,” Annals of Nutrition and Metabolism, vol. 41, no. 6, pp. 344–352, 1997. View at Scopus
  11. D. Talwar, T. Quasim, D. C. McMillan, J. Kinsella, C. Williamson, and D. S. J. O'Reilly, “Optimisation and validation of a sensitive high-performance liquid chromatography assay for routine measurement of pyridoxal 5-phosphate in human plasma and red cells using pre-column semicarbazide derivatisation,” Journal of Chromatography B, vol. 792, no. 2, pp. 333–343, 2003. View at Publisher · View at Google Scholar · View at Scopus
  12. A. Lui, L. Lumeng, G. R. Aronoff, and T. K. Li, “Relationship between body store of vitamin B6 and plasma pyridoxal-P clearance: metabolic balance studies in humans,” The Journal of Laboratory and Clinical Medicine, vol. 106, no. 5, pp. 491–497, 1985. View at Scopus
  13. Food Nutrition Board and Institute of Medicine, Dietary Reference Intakes. Thiamin, Riboflavin, Niacin, Vitamin B-6, Folate, Vitamin B-12, Pantothenic Acid, Biotin, and Choline, National Academy Press, Washington, DC, USA, 1988.
  14. A. Araki and Y. Sako, “Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection,” Journal of Chromatography, vol. 422, pp. 43–52, 1987. View at Scopus
  15. D. W. Jacobsen, “Determinants of hyperhomocysteinemia: a matter of nature and nurture,” The American Journal of Clinical Nutrition, vol. 64, no. 4, pp. 641–642, 1996. View at Scopus
  16. D. Lapenna, G. Ciofani, S. D. Pierdomenico, M. A. Giamberardino, and F. Cuccurullo, “Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma,” Free Radical Biology and Medicine, vol. 31, no. 3, pp. 331–335, 2001. View at Publisher · View at Google Scholar · View at Scopus
  17. A. Ghiselli, M. Serafini, F. Natella, and C. Scaccini, “Total antioxidant capacity as a tool to assess redox status: critical view and experimental data,” Free Radical Biology and Medicine, vol. 29, no. 11, pp. 1106–1114, 2000. View at Publisher · View at Google Scholar · View at Scopus
  18. M. R. Pinsky, “Antioxidant therapy for severe sepsis: promise and perspective,” Critical Care Medicine, vol. 31, no. 11, pp. 2697–2698, 2003. View at Publisher · View at Google Scholar · View at Scopus
  19. O. Erel, “A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation,” Clinical Biochemistry, vol. 37, no. 4, pp. 277–285, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. J. D. Hayes and L. I. McLellan, “Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress,” Free Radical Research, vol. 31, no. 4, pp. 273–300, 1999. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Shen, C. Q. Lai, J. Mattei, J. M. Ordovas, and K. L. Tucker, “Association of vitamin B-6 status with inflammation, oxidative stress, and chronic inflammatory conditions: the Boston Puerto Rican Health Study,” The American Journal of Clinical Nutrition, vol. 91, no. 2, pp. 337–342, 2010. View at Publisher · View at Google Scholar · View at Scopus
  22. A. Duncan, D. Talwar, D. C. McMillan, F. Stefanowicz, and D. S. J. O’Reilly, “Quantitative data on the magnitude of the systemic inflammatory response and its effect on micronutrient status based on plasma measurements,” The American Journal of Clinical Nutrition, vol. 95, no. 1, pp. 64–71, 2012.
  23. M. Ehrenshaft, P. Bilski, M. Li, C. F. Chignell, and M. E. Daub, “A highly conserved sequence is a novel gene involved in de novo vitamin B6 biosynthesis,” Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 16, pp. 9374–9378, 1999. View at Publisher · View at Google Scholar · View at Scopus
  24. B. K. Ohta and C. S. Foote, “Characterization of endoperoxide and hydroperoxide intermediates in the reaction of pyridoxine with singlet oxygen,” Journal of the American Chemical Society, vol. 124, no. 41, pp. 12064–12065, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. M. Keles, B. Al, K. Gumustekin et al., “Antioxidative status and lipid peroxidation in kidney tissue of rats fed with vitamin B6-deficient diet,” Renal Failure, vol. 32, no. 5, pp. 618–622, 2010. View at Publisher · View at Google Scholar · View at Scopus
  26. A. H. Merrill and J. M. Henderson, “Diseases associated with defects in vitamin B6 metabolism or utilization,” Annual Review of Nutrition, vol. 7, pp. 137–156, 1987. View at Scopus
  27. D. Talwar, T. Quasim, D. C. McMillan, J. Kinsella, C. Williamson, and D. S. J. O'Reilly, “Pyridoxal phosphate decreases in plasma but not erythrocytes during systemic inflammatory response,” Clinical Chemistry, vol. 49, no. 3, pp. 515–518, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. A. Gray, D. C. McMillan, C. Wilson, C. Williamson, D. S. J. O'Reilly, and D. Talwar, “The relationship between plasma and red cell concentrations of vitamins thiamine diphosphate, flavin adenine dinucleotide and pyridoxal 5-phosphate following elective knee arthroplasty,” Clinical Nutrition, vol. 23, no. 5, pp. 1080–1083, 2004. View at Publisher · View at Google Scholar · View at Scopus
  29. A. T. Vasilaki, D. C. McMillan, J. Kinsella, A. Duncan, D. S. J. O'Reilly, and D. Talwar, “Relation between pyridoxal and pyridoxal phosphate concentrations in plasma, red cells, and white cells in patients with critical illness,” American Journal of Clinical Nutrition, vol. 88, no. 1, pp. 140–146, 2008. View at Scopus
  30. G. Davì, G. Di Minno, A. Coppola, et al., “Oxidative stress and platelet activation in homozygous homocystinuria,” Circulation, vol. 104, no. 10, pp. 1124–1128, 2001.
  31. L. L. Wu and J. T. Wu, “Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker,” Clinica Chimica Acta, vol. 322, no. 1-2, pp. 21–28, 2002. View at Publisher · View at Google Scholar · View at Scopus
  32. M. G. Signorello, G. L. Viviani, U. Armani et al., “Homocysteine, reactive oxygen species and nitric oxide in type 2 diabetes mellitus,” Thrombosis Research, vol. 120, no. 4, pp. 607–613, 2007. View at Publisher · View at Google Scholar · View at Scopus