About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 573169, 6 pages
http://dx.doi.org/10.1155/2013/573169
Research Article

Intravenous Transplantation of Mesenchymal Stromal Cells to Enhance Peripheral Nerve Regeneration

1Department of Plastic, Hand and Reconstructive Surgery, Hannover Medical School, 30659 Hannover, Germany
2Department of Neurology and Center for Neuroscience and Regeneration Research, School of Medicine, Yale University, New Haven, CT 06510, USA
3Rehabilitation Research Center, Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516, USA

Received 7 August 2013; Revised 7 October 2013; Accepted 7 October 2013

Academic Editor: Ji Wu

Copyright © 2013 Stella M. Matthes et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. B. Jackson, M. Dijkers, M. J. Devivo, and R. B. Poczatek, “A demographic profile of new traumatic spinal cord injuries: change and stability over 30 years,” Archives of Physical Medicine and Rehabilitation, vol. 85, no. 11, pp. 1740–1748, 2004. View at Publisher · View at Google Scholar · View at Scopus
  2. A. Waller, “Experiments on the glossopharyngeal and hypoglossal nerves of the frog and observations produced thereby in the structure of their primitive fibers,” Philosophical Transactions of the Royal Society of London, vol. 140, pp. 423–429, 1850. View at Publisher · View at Google Scholar
  3. O. Honmou, R. Onodera, M. Sasaki, S. G. Waxman, and J. D. Kocsis, “Mesenchymal stem cells: therapeutic outlook for stroke,” Trends in Molecular Medicine, vol. 18, no. 5, pp. 292–297, 2012. View at Publisher · View at Google Scholar · View at Scopus
  4. B.-W. Park, D.-H. Kang, E.-J. Kang et al., “Peripheral nerve regeneration using autologous porcine skin-derived mesenchymal stem cells,” Journal of Tissue Engineering and Regenerative Medicine, vol. 6, no. 2, pp. 113–124, 2012. View at Publisher · View at Google Scholar · View at Scopus
  5. S. Karamouzian, S. N. Nematollahi-Mahani, N. Nakhaee, and H. Eskandary, “Clinical safety and primary efficacy of bone marrow mesenchymal cell transplantation in subacute spinal cord injured patients,” Clinical Neurology and Neurosurgery, vol. 114, no. 7, pp. 935–939, 2012. View at Publisher · View at Google Scholar · View at Scopus
  6. J. D. Kocsis and O. Honmou, “Bone marrow stem cells in experimental stroke,” Progress in Brain Research, vol. 201, pp. 79–98, 2012. View at Publisher · View at Google Scholar
  7. M. A. Dombrowski, M. Sasaki, K. L. Lankford, J. D. Kocsis, and C. Radtke, “Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells,” Brain Research, vol. 1125, no. 1, pp. 1–8, 2006. View at Publisher · View at Google Scholar · View at Scopus
  8. C. Radtke, Y. Akiyama, K. L. Lankford, P. M. Vogt, D. S. Krause, and J. D. Kocsis, “Integration of engrafted Schwann cells into injured peripheral nerve: axonal association and nodal formation on regenerated axons,” Neuroscience Letters, vol. 387, no. 2, pp. 85–89, 2005. View at Publisher · View at Google Scholar · View at Scopus
  9. C. Radtke, A. A. Aizer, S. K. Agulian, K. L. Lankford, P. M. Vogt, and J. D. Kocsis, “Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair,” Brain Research, vol. 1254, pp. 10–17, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. Y. Akiyama, C. Radtke, O. Honmou, and J. D. Kocsis, “Remyelination of the spinal cord following intravenous delivery of bone marrow cells,” Glia, vol. 39, no. 3, pp. 229–236, 2002. View at Publisher · View at Google Scholar · View at Scopus
  11. Y. Akiyama, C. Radtke, and J. D. Kocsis, “Remyelination of the rat spinal cord by transplantation of identified bone marrow stromal cells,” Journal of Neuroscience, vol. 22, no. 15, pp. 6623–6630, 2002. View at Scopus
  12. L. De Medinaceli, W. J. Freed, and R. J. Wyatt, “An index of the functional condition of rat sciatic nerve based on measurements made from walking tracks,” Experimental Neurology, vol. 77, no. 3, pp. 634–643, 1982. View at Scopus
  13. E.-S. Kang, K.-Y. Ha, and Y.-H. Kim, “Fate of transplanted bone marrow derived mesenchymal stem cells following spinal cord injury in rats by transplantation routes,” Journal of Korean Medical Science, vol. 27, no. 6, pp. 586–593, 2012.
  14. S. Kidd, E. Spaeth, J. L. Dembinski et al., “Direct evidence of mesenchymal stem cell tropism for tumor and wounding microenvironments using in vivo bioluminescent imaging,” Stem Cells, vol. 27, no. 10, pp. 2614–2623, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. E. Spaeth, A. Klopp, J. Dembinski, M. Andreeff, and F. Marini, “Inflammation and tumor microenvironments: defining the migratory itinerary of mesenchymal stem cells,” Gene Therapy, vol. 15, no. 10, pp. 730–738, 2008. View at Publisher · View at Google Scholar · View at Scopus
  16. S. Slavin, B. G. S. Kurkalli, and D. Karussis, “The potential use of adult stem cells for the treatment of multiple sclerosis and other neurodegenerative disorders,” Clinical Neurology and Neurosurgery, vol. 110, no. 9, pp. 943–946, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. R. Quertainmont, D. Cantinieaux, O. Botman, S. Sid, J. Schoenen, and R. Franzen, “Mesenchymal stem cell graft improves recovery after spinal cord injury in adult rats through neurotrophic and pro-angiogenic actions,” PLoS ONE, vol. 7, no. 6, Article ID e39500, 2012. View at Publisher · View at Google Scholar
  18. R. H. Lee, A. A. Pulin, M. J. Seo et al., “Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6,” Cell Stem Cell, vol. 5, no. 1, pp. 54–63, 2009. View at Publisher · View at Google Scholar · View at Scopus
  19. J. Wang, L. Liao, and J. Tan, “Mesenchymal-stem-cell-based experimental and clinical trials: current status and open questions,” Expert Opinion on Biological Therapy, vol. 11, no. 7, pp. 893–909, 2011. View at Publisher · View at Google Scholar · View at Scopus
  20. D. J. Prockop and J. Y. Oh, “Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation,” Molecular Therapy, vol. 20, no. 1, pp. 14–20, 2012. View at Publisher · View at Google Scholar · View at Scopus
  21. L. I. Benowitz and P. G. Popovich, “Inflammation and axon regeneration,” Current Opinion in Neurology, vol. 24, no. 6, pp. 577–583, 2011. View at Publisher · View at Google Scholar · View at Scopus
  22. T. Kinnaird, E. S. Burnett, M. Shou et al., “Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms,” Circulation, vol. 109, no. 12, pp. 1543–1549, 2004. View at Publisher · View at Google Scholar · View at Scopus
  23. M. I. Hobson, “Increased vascularisation enhances axonal regeneration within an acellular nerve conduit,” Annals of the Royal College of Surgeons of England, vol. 84, no. 1, pp. 47–53, 2002. View at Scopus