About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 578290, 12 pages
http://dx.doi.org/10.1155/2013/578290
Review Article

Carbon Nanotubes: Applications in Pharmacy and Medicine

1China Pharmaceutical University, Nanjing 210009, China
2Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
3Department of Pharmacy, Stanford University Medical Center, Palo Alto, CA 94304, USA
4Faculty of Pharmacy, University of Paris V, 4 avenue de l’Observatoire, 75006 Paris, France

Received 7 July 2013; Accepted 26 July 2013

Academic Editor: Takeshi Noda

Copyright © 2013 Hua He et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 1991. View at Scopus
  2. R. Hirlekar, M. Yamagar, H. Garse, M. Vij, and V. Kadam, “Carbon nanotubes and its applications: a review,” Asian Journal of Pharmaceutical and Clinical Research, vol. 2, no. 4, pp. 17–27, 2009. View at Scopus
  3. B. G. P. Singh, C. Baburao, V. Pispati et al., “Carbon nanotubes. A novel drug delivery system,” International Journal of Research in Pharmacy and Chemistry, vol. 2, no. 2, pp. 523–532, 2012.
  4. Y. Usui, H. Haniu, S. Tsuruoka, and N. Saito, “Carbon nanotubes innovate on medical technology,” Medicinal Chemistry, vol. 2, no. 1, pp. 1–6, 2012.
  5. Y. Zhang, Y. Bai, and B. Yan, “Functionalized carbon nanotubes for potential medicinal applications,” Drug Discovery Today, vol. 15, no. 11-12, pp. 428–435, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Kateb, V. Yamamoto, D. Alizadeh et al., “Multi-walled carbon nanotube (MWCNT) synthesis, preparation, labeling, and functionalization,” Methods in Molecular Biology, vol. 651, pp. 307–317, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. Z. Liu, X. Sun, N. Nakayama-Ratchford, and H. Dai, “Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery,” ACS Nano, vol. 1, no. 1, pp. 50–56, 2007. View at Publisher · View at Google Scholar · View at Scopus
  8. W. Zhang, Z. Zhang, and Y. Zhang, “The application of carbon nanotubes in target drug delivery systems for cancer therapies,” Nanoscale Research Letters, vol. 6, pp. 555–577, 2011. View at Publisher · View at Google Scholar · View at Scopus
  9. Y. Rosen and N. M. Elman, “Carbon nanotubes in drug delivery: focus on infectious diseases,” Expert Opinion on Drug Delivery, vol. 6, no. 5, pp. 517–530, 2009. View at Publisher · View at Google Scholar · View at Scopus
  10. E. Bekyarova, Y. Ni, E. B. Malarkey, et al., “Applications of carbon nanotubes in biotechnology and biomedicine,” Journal of Biomedical Nanotechnology, vol. 1, no. 1, pp. 3–17, 2005.
  11. A. Galano, “Carbon nanotubes: promising agents against free radicals,” Nanoscale, vol. 2, no. 3, pp. 373–380, 2010. View at Publisher · View at Google Scholar · View at Scopus
  12. J. Yu, D. Huang, K. Huang, and Y. Hong, “Preparation of hydroxypropyl-β-cyclodextrin cross-linked multi-walled carbon nanotubes and their application in enantioseparation of clenbuterol,” Chinese Journal of Chemistry, vol. 29, no. 5, pp. 893–897, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. A. H. El-Sheikh and J. A. Sweileh, “Recent applications of carbon nanotubes in solid phase extraction and preconcentration: a review,” Jordan Journal of Chemistry, vol. 6, no. 1, pp. 1–16, 2011.
  14. S. Li, H. He, Q. Jiao, and C. Pham-Huy, “Applications of carbon nanotubes in drug and gene delivery,” Progress in Chemistry, vol. 20, no. 11, pp. 1798–1803, 2008. View at Scopus
  15. S. Li, H. He, Z. Chen, J. Zha, and C. Pham-Huy, “Fluorescence study on the interactions between carbon nanotubes and bovine serum albumin,” Spectroscopy and Spectral Analysis, vol. 30, no. 10, pp. 2689–2692, 2010. View at Publisher · View at Google Scholar · View at Scopus
  16. Z. Chen, H. He, S. Tan, J. Zha, and J. Huang, “Comparative study on contents of oxygen-containing groups on multi-walled carbon nanotubes functionalized by three kinds of acid oxidative methods,” Chinese Journal of Analytical Chemistry, vol. 39, no. 5, pp. 718–722, 2011.
  17. J. Zha, H. He, T. Liu, S. Li, and Q. Jiao, “Studies on the interaction of gatifloxacin with bovine serum albumin in the presence of carbon nanotubes by fluorescence spectroscopy,” Spectroscopy and Spectral Analysis, vol. 31, no. 1, pp. 149–153, 2011. View at Publisher · View at Google Scholar · View at Scopus
  18. Z. Chen, D. Pierre, H. He et al., “Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes,” International Journal of Pharmaceutics, vol. 405, no. 1-2, pp. 153–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  19. L. Jiang, L. Li, H. He, D. Xiao, and T. Liu, “Preparation methods of amino-functionalized carbon nanotubes and their application in pharmaceutical field,” Progress in Pharmaceutical Sciences, vol. 36, no. 9, pp. 400–405, 2012.
  20. L. Jiang, T. Liu, H. He et al., “Adsorption behavior of pazufloxacin mesilate on amino-functionalized carbon nanotubes,” Journal of Nanoscience and Nanotechnology, vol. 12, pp. 1–9, 2012.
  21. D. Xiao, P. Dramou, N. Xiong et al., “Development of novel molecularly imprinted magnetic solid-phase extraction materials based on magnetic carbon nanotubes and their application for the determination of gatifloxacin in serum samples coupled with high performance liquid chromatography,” Journal of Chromatography A, vol. 1274, pp. 44–53, 2013.
  22. L. Li, R. Lin, H. He, L. Jiang, and M. M. Gao, “Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin,” Spectrochimica Acta A, vol. 105, pp. 45–51, 2013.
  23. D. Xiao, P. Dramou, H. He et al., “Magnetic carbon nanotubes: synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system,” Journal of Nanoparticle Research, vol. 14, pp. 984–995, 2012.
  24. H. Liao, B. Paratala, B. Sitharaman, and Y. Wang, “Applications of carbon nanotubes in biomedical studies,” Methods in Molecular Biology, vol. 726, pp. 223–241, 2011. View at Publisher · View at Google Scholar · View at Scopus
  25. Z. Liu, S. Tabakman, K. Welsher, and H. Dai, “Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery,” Nano Research, vol. 2, no. 2, pp. 85–120, 2009. View at Publisher · View at Google Scholar · View at Scopus
  26. M. S. Digge, R. S. Moon, and S. G. Gattani, “Applications of carbon nanotubes in drug delivery: a review,” International Journal of PharmTech Research, vol. 4, no. 2, pp. 839–847, 2012.
  27. W. Yang, P. Thordarson, J. J. Gooding, S. P. Ringer, and F. Braet, “Carbon nanotubes for biological and biomedical applications,” Nanotechnology, vol. 18, Article ID 412001, 12 pages, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. K. T. Al-Jamal, H. Nerl, K. H. Müller et al., “Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging,” Nanoscale, vol. 3, no. 6, pp. 2627–2635, 2011. View at Publisher · View at Google Scholar · View at Scopus
  29. S. Y. Madani, N. Naderi, O. Dissanayake, A. Tan, and A. M. Seifalian, “A new era of cancer treatment: carbon nanotubes as drug delivery tools,” International Journal of Nanomedicine, vol. 6, pp. 2963–2979, 2011.
  30. C. L. Lay, J. Liu, and Y. Liu, “Functionalized carbon nanotubes for anticancer drug delivery,” Expert Review of Medical Devices, vol. 8, no. 5, pp. 561–566, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. M. A. Elhissi, W. Ahmed, I. U. Hassan, V. R. Dhanak, and A. D'Emanuele, “Carbon nanotubes in cancer therapy and drug delivery,” Journal of Drug Delivery, vol. 2012, Article ID 837327, 10 pages, 2012. View at Publisher · View at Google Scholar
  32. R. Li, R. Wu, L. Zhao, M. Wu, L. Yang, and H. Zou, “P-glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells,” ACS Nano, vol. 4, no. 3, pp. 1399–1408, 2010. View at Publisher · View at Google Scholar · View at Scopus
  33. D. Pantarotto, R. Singh, D. McCarthy et al., “Functionalized carbon nanotubes for plasmid DNA gene delivery,” Angewandte Chemie, vol. 43, no. 39, pp. 5242–5246, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. Y. Rosen, B. Mattix, A. Rao, and F. Alexis, “Carbon nanotubes and infectious diseases,” in Nanomedicine in Health and Disease, R. J. Hunter, Ed., pp. 249–267, Science Publishers, London, UK, 2011.
  35. R. A. MacDonald, B. F. Laurenzi, G. Viswanathan, P. M. Ajayan, and J. P. Stegemann, “Collagen-carbon nanotube composite materials as scaffolds in tissue engineering,” Journal of Biomedical Materials Research A, vol. 74, no. 3, pp. 489–496, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. Z. Yang, Y. Zhang, Y. Yang et al., “Pharmacological and toxicological target organelles and safe use of single-walled carbon nanotubes as drug carriers in treating Alzheimer disease,” Nanomedicine, vol. 6, no. 3, pp. 427–441, 2010. View at Publisher · View at Google Scholar · View at Scopus
  37. L. A. Pham-Huy, H. He, and C. Pham-Huy, “Free radicals, antioxidants in disease and health,” International Journal of Biomedical Science, vol. 4, no. 2, pp. 89–96, 2008. View at Scopus
  38. A. Galano, “Carbon nanotubes as free-radical scavengers,” Journal of Physical Chemistry C, vol. 112, no. 24, pp. 8922–8927, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. M. Francisco-Marquez, A. Galano, and A. Martínez, “On the free radical scavenging capability of carboxylated single-walled carbon nanotubes,” Journal of Physical Chemistry C, vol. 114, no. 14, pp. 6363–6370, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. J. Wang, “Carbon-nanotube based electrochemical biosensors: a review,” Electroanalysis, vol. 17, no. 1, pp. 7–14, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. Y. Zhu, L. Wang, and C. Xu, “Carbon nanotubes in biomedicine and biosensing,” in Carbon Nanotubes—Growth and Applications, M. Naraghi, Ed., pp. 135–162, InTech, Shanghai, China, 2011.
  42. L. A. Nguyen, H. He, and C. Pham-Huy, “Chiral drugs. An overview,” International Journal of Biomedical Science, vol. 2, no. 2, pp. 85–100, 2006.
  43. R. A. Silva, M. C. Talio, M. O. Luconi, and L. P. Fernandez, “Evaluation of carbon nanotubes as chiral selectors for continuous-flow enantiomeric separation of cardevilol with fluorescent detection,” Journal of Pharmaceutical and Biomedical Analysis, vol. 70, pp. 631–635, 2012.
  44. L. M. Ravelo-Pérez, A. V. Herrera-Herrera, J. Hernández-Borges, and M. A. Rodríguez-Delgado, “Carbon nanotubes: solid-phase extraction. Review,” Journal of Chromatography A, vol. 1217, pp. 2618–2641, 2010.
  45. S. Yang, J. Luo, Q. Zhou, and H. Wang, “Pharmacokinetics, metabolism and toxicity of carbon nanotubes for bio-medical purposes,” Theranostics, vol. 2, no. 3, pp. 271–282, 2012.
  46. H. Wang, J. Wang, X. Deng et al., “Biodistribution of carbon single-wall carbon nanotubes in mice,” Journal of Nanoscience and Nanotechnology, vol. 4, no. 8, pp. 1019–1024, 2004. View at Publisher · View at Google Scholar · View at Scopus
  47. R. Singh, D. Pantarotto, L. Lacerda et al., “Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers,” Proceedings of the National Academy of Sciences of the United States of America, vol. 103, no. 9, pp. 3357–3362, 2006. View at Publisher · View at Google Scholar · View at Scopus
  48. V. E. Kagan, N. V. Konduru, A. A. Shvedova, et al., “Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation,” Nature Nanotechnology, vol. 5, no. 5, pp. 354–359, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. Y. Chang, S. Yang, J. Liu et al., “In vitro toxicity evaluation of graphene oxide on A549 cells,” Toxicology Letters, vol. 200, no. 3, pp. 201–210, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. C. P. Firme III and P. R. Bandaru, “Toxicity issues in the application of carbon nanotubes to biological systems,” Nanomedicine, vol. 6, no. 2, pp. 245–256, 2010. View at Publisher · View at Google Scholar · View at Scopus
  51. A. Casey, E. Herzog, F. M. Lyng, H. J. Byrne, G. Chambers, and M. Davoren, “Single walled carbon nanotubes induce indirect cytotoxicity by medium depletion in A549 lung cells,” Toxicology Letters, vol. 179, no. 2, pp. 78–84, 2008. View at Publisher · View at Google Scholar · View at Scopus
  52. H. Dumortier, S. Lacotte, R. Marega et al., “Functionalized carbon nanotubes are non-cytotoxic and preserve the functionality of primary immune cells,” Nano Letters, vol. 6, no. 7, pp. 1522–1528, 2006. View at Publisher · View at Google Scholar · View at Scopus
  53. Y. Han, J. Xu, Z. Li, G. Ren, and Z. Yang, “In vitro toxicity of multi-walled carbon nanotubes in C6 rat glioma cells,” NeuroToxicology, vol. 33, no. 5, pp. 1128–1134, 2012.
  54. A. A. Shvedova, E. R. Kisin, D. Porter et al., “Mechanisms of pulmonary toxicity and medical applications of carbon nanotubes: two faces of Janus?” Pharmacology and Therapeutics, vol. 121, no. 2, pp. 192–204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. C. Fisher, A. E. Rider, Z. J. Han, S. Kumar, I. Levchenko, and K. K. Ostrikov, “Applications and nanotoxicity of carbon nanotubes and graphene in biomedicine. Review,” Journal of Nanomaterials, vol. 2012, Article ID 315185, 19 pages, 2012. View at Publisher · View at Google Scholar
  56. C. L. Ursini, D. Cavallo, A. M. Fresegna, et al., “Study of cytotoxic and genotoxic effects of hydroxyl-functionalized multiwalled carbon nanotubes on human pulmonary cells,” Journal of Nanomaterials, vol. 2012, Article ID 815979, 9 pages, 2012. View at Publisher · View at Google Scholar
  57. D. Zhang, X. Deng, Z. Ji et al., “Long-term hepatotoxicity of polyethylene-glycol functionalized multi-walled carbon nanotubes in mice,” Nanotechnology, vol. 21, no. 17, p. 175101, 2010. View at Scopus
  58. J. K. Folkmann, L. Risom, N. R. Jacobsen, H. Wallin, S. Loft, and P. Møller, “Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes,” Environmental Health Perspectives, vol. 117, no. 5, pp. 703–708, 2009. View at Publisher · View at Google Scholar · View at Scopus
  59. A. Fraczek, E. Menaszek, C. Paluszkiewicz, and M. Blazewicz, “Comparative in vivo biocompatibility study of single- and multi-wall carbon nanotubes,” Acta Biomaterialia, vol. 4, no. 6, pp. 1593–1602, 2008. View at Publisher · View at Google Scholar · View at Scopus
  60. L. Lacerda, A. Bianco, M. Prato, and K. Kostarelos, “Carbon nanotubes as nanomedicines: from toxicology to pharmacology,” Advanced Drug Delivery Reviews, vol. 58, no. 14, pp. 1460–1470, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. S. Takanashi, K. Hara, K. Aoki, et al., “Carcinogenicity evaluation for the application of carbon nanotubes as biomaterials in rasH2 mice,” Scientific Reports, vol. 2, no. 498, pp. 1–7, 2012.
  62. K. Donaldson, R. Aitken, L. Tran et al., “Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety,” Toxicological Sciences, vol. 92, no. 1, pp. 5–22, 2006. View at Publisher · View at Google Scholar · View at Scopus
  63. C. A. Poland, R. Duffin, I. Kinloch et al., “Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study,” Nature Nanotechnology, vol. 3, no. 7, pp. 423–428, 2008. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Ali-Boucetta, A. Nunes, R. Sainz et al., “Asbestos-like pathogenicity of long carbon nanotubes alleviated by chemical functionalization,” Angewandte Chemie, vol. 52, no. 8, pp. 2274–2278, 2013.