About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 581631, 9 pages
http://dx.doi.org/10.1155/2013/581631
Review Article

Clinical Use and Mechanisms of Infliximab Treatment on Inflammatory Bowel Disease: A Recent Update

1Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
2Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China

Received 3 September 2012; Revised 17 December 2012; Accepted 7 January 2013

Academic Editor: Gerly A. C. Brito

Copyright © 2013 Yuan Guo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. R. J. Xavier and D. K. Podolsky, “Unravelling the pathogenesis of inflammatory bowel disease,” Nature, vol. 448, no. 7152, pp. 427–434, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. N. Kamada, T. Hisamatsu, S. Okamoto et al., “Abnormally differentiated subsets of intestinal macrophage play a key role in Th1-dominant chronic colitis through excess production of IL-12 and IL-23 in response to bacteria,” Journal of Immunology, vol. 175, no. 10, pp. 6900–6908, 2005. View at Scopus
  3. A. P. Bai and Q. Ouyang, “Probiotics and inflammatory bowel diseases,” Postgraduate Medical Journal, vol. 82, no. 968, pp. 376–382, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. K. A. Papadakis and S. R. Targan, “Role of cytokines in the pathogenesis of inflammatory bowel disease,” Annual Review of Medicine, vol. 51, pp. 289–298, 2000. View at Publisher · View at Google Scholar · View at Scopus
  5. M. Apostolaki, M. Armaka, P. Victoratos, and G. Kollias, “Cellular mechanisms of TNF function in models of inflammation and autoimmunity,” Current Directions in Autoimmunity, vol. 11, pp. 1–26, 2010. View at Publisher · View at Google Scholar · View at Scopus
  6. B. Khor, A. Gardet, and R. J. Xavier, “Genetics and pathogenesis of inflammatory bowel disease,” Nature, vol. 474, no. 7351, pp. 307–317, 2011. View at Publisher · View at Google Scholar · View at Scopus
  7. M. Komatsu, D. Kobayashi, K. Saito et al., “Tumor necrosis factor-α in serum of patients with inflammatory bowel disease as measured by a highly sensitive immuno-PCR,” Clinical Chemistry, vol. 47, no. 7, pp. 1297–1301, 2001. View at Scopus
  8. C. Stevens, G. Walz, C. Singaram et al., “Tumor necrosis factor-α, interleukin-1β, and interleukin-6 expression in inflammatory bowel disease,” Digestive Diseases and Sciences, vol. 37, no. 6, pp. 818–826, 1992. View at Publisher · View at Google Scholar · View at Scopus
  9. J. Wang and Y. X. Fu, “Tumor necrosis factor family members and inflammatory bowel disease,” Immunological Reviews, vol. 204, pp. 144–155, 2005. View at Publisher · View at Google Scholar · View at Scopus
  10. S. Nikolaus, A. Raedler, T. Kühbacher, N. Sfikas, U. R. Fölsch, and S. Schreiber, “Mechanisms in failure of infliximab for Crohn's disease,” Lancet, vol. 356, no. 9240, pp. 1475–1479, 2000. View at Scopus
  11. P. Rutgeerts, G. Van Assche, and S. Vermeire, “Optimizing anti-TNF treatment in inflammatory bowel disease,” Gastroenterology, vol. 126, no. 6, pp. 1593–1610, 2004. View at Publisher · View at Google Scholar · View at Scopus
  12. W. J. Sandborn, “Current directions in IBD therapy: what goals are feasible with biological modifiers?” Gastroenterology, vol. 135, no. 5, pp. 1442–1447, 2008. View at Publisher · View at Google Scholar · View at Scopus
  13. G. D'Haens and M. Daperno, “Advances in biologic therapy for ulcerative colitis and Crohn's disease,” Current Gastroenterology Reports, vol. 8, no. 6, pp. 506–512, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. P. Rutgeerts, S. Vermeire, and G. Van Assche, “Biological therapies for inflammatory bowel diseases,” Gastroenterology, vol. 136, no. 4, pp. 1182–1197, 2009. View at Publisher · View at Google Scholar · View at Scopus
  15. J. K. Yamamoto-Furusho, “Innovative therapeutics for inflammatory bowel disease,” World Journal of Gastroenterology, vol. 13, no. 13, pp. 1893–1896, 2007. View at Scopus
  16. S. Danese, “Mechanisms of action of infliximab in inflammatory bowel disease: an anti-inflammatory multitasker,” Digestive and Liver Disease, vol. 40, supplement 2, pp. S225–S228, 2008. View at Publisher · View at Google Scholar · View at Scopus
  17. F. Cornillie, D. Shealy, G. D'Haens et al., “Infliximab induces potent anti-inflammatory and local immunomodulatory activity but no systemic immune suppression in patients with Crohn's disease,” Alimentary Pharmacology and Therapeutics, vol. 15, no. 4, pp. 463–473, 2001. View at Publisher · View at Google Scholar · View at Scopus
  18. F. Atzeni, M. Turiel, F. Capsoni, A. Doria, P. Meroni, and P. Sarzi-Puttini, “Autoimmunity and anti-TNF-α agents,” Annals of the New York Academy of Sciences, vol. 1051, pp. 559–569, 2005. View at Publisher · View at Google Scholar · View at Scopus
  19. P. C. F. Stokkers and D. W. Hommes, “New cytokine therapeutics for inflammatory bowel disease,” Cytokine, vol. 28, no. 4-5, pp. 167–173, 2004. View at Publisher · View at Google Scholar · View at Scopus
  20. T. Ljung, L. G. Axelsson, M. Herulf, J. O. Lundberg, and P. M. Hellström, “Early changes in rectal nitric oxide and mucosal inflammatory mediators in Crohn's colitis in response to infliximab treatment,” Alimentary Pharmacology and Therapeutics, vol. 25, no. 8, pp. 925–932, 2007. View at Publisher · View at Google Scholar · View at Scopus
  21. J. Agnholt, J. Kelsen, B. Brandsborg, N. O. Jakobsen, and J. F. Dahlerup, “Increased production of granulocyte-macrophage colony-stimulating factor in Crohn's disease—a possible target for infliximab treatment,” European Journal of Gastroenterology and Hepatology, vol. 16, no. 7, pp. 649–655, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. H. Van den Brande, H. Braat, G. R. van den Brink et al., “Infliximab but not etanercept induces apoptosis in lamina propria T-lymphocytes from patients with Crohn's disease,” Gastroenterology, vol. 124, no. 7, pp. 1774–1785, 2003. View at Publisher · View at Google Scholar · View at Scopus
  23. A. Di Sabatino, R. Ciccocioppo, B. Cinque et al., “Defective mucosal T cell death is sustainably reverted by infliximab in a caspase dependent pathway in Crohn's disease,” Gut, vol. 53, no. 1, pp. 70–77, 2004. View at Publisher · View at Google Scholar · View at Scopus
  24. T. ten Hove, C. Van Montfrans, M. P. Peppelenbosch, and S. J. H. Van Deventer, “Infliximab treatment induces apoptosis of lamina propria T lymphocytes in Crohn's disease,” Gut, vol. 50, no. 2, pp. 206–211, 2002. View at Publisher · View at Google Scholar · View at Scopus
  25. P. J. Mannon, I. J. Fuss, L. Mayer et al., “Anti-interleukin-12 antibody for active Crohn's disease,” The New England Journal of Medicine, vol. 351, no. 20, pp. 2069–2079, 2004. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Andou, T. Hisamatsu, S. Okamoto et al., “Dietary histidine ameliorates murine colitis by inhibition of proinflammatory cytokine production from macrophages,” Gastroenterology, vol. 136, no. 2, pp. 564–574.e2, 2009. View at Publisher · View at Google Scholar · View at Scopus
  27. N. Kamada, T. Hisamatsu, S. Okamoto et al., “Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-γ axis,” Journal of Clinical Investigation, vol. 118, no. 6, pp. 2269–2280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  28. J. Agnholt and K. Kaltoft, “Infliximab downregulates interferon-γ production in activated gut T-lymphocytes from patients with Crohn's disease,” Cytokine, vol. 15, no. 4, pp. 212–222, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. C. Veltkamp, M. Anstaett, K. Wahl, et al., “Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFalpha treatment,” Gut, vol. 60, pp. 1345–1353, 2011. View at Publisher · View at Google Scholar
  30. I. Ricciardelli, K. J. Lindley, M. Londei, and S. Quaratino, “Anti tumour necrosis-α therapy increases the number of FOXP3+ regulatory T cells in children affected by Crohn's disease,” Immunology, vol. 125, no. 2, pp. 178–183, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. B. D. Fleming and D. M. Mosser, “Regulatory macrophages: setting the threshold for therapy,” European Journal of Immunology, vol. 41, no. 9, pp. 2498–2502, 2011. View at Publisher · View at Google Scholar
  32. P. Suenaert, V. Bulteel, L. Lemmens et al., “Anti-tumor necrosis factor treatment restores the gut barrier in Crohn's disease,” American Journal of Gastroenterology, vol. 97, no. 8, pp. 2000–2004, 2002. View at Publisher · View at Google Scholar · View at Scopus
  33. S. Zeissig, C. Bojarski, N. Buergel et al., “Downregulation of epithelial apoptosis and barrier repair in active Crohn's disease by tumour necrosis factor α antibody treatment,” Gut, vol. 53, no. 9, pp. 1295–1302, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. I. Arijs, G. De Hertogh, K. Machiels et al., “Mucosal gene expression of cell adhesion molecules, chemokines, and chemokine receptors in patients with inflammatory bowel disease before and after infliximab treatment,” American Journal of Gastroenterology, vol. 106, no. 4, pp. 748–761, 2011. View at Publisher · View at Google Scholar · View at Scopus
  35. F. Schinzari, A. Armuzzi, B. De Pascalis et al., “Tumor necrosis factor-α antagonism improves endothelial dysfunction in patients with Crohn's disease,” Clinical Pharmacology and Therapeutics, vol. 83, no. 1, pp. 70–76, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. F. Scaldaferri, S. Vetrano, M. Sans et al., “VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis,” Gastroenterology, vol. 136, no. 2, pp. 585–595.e5, 2009. View at Publisher · View at Google Scholar · View at Scopus
  37. M. J. Meijer, M. A. C. Mieremet-Ooms, W. van Duijn et al., “Effect of the anti-tumor necrosis factor-α antibody infliximab on the ex vivo mucosal matrix metalloproteinase-proteolytic phenotype in inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 13, no. 2, pp. 200–210, 2007. View at Publisher · View at Google Scholar · View at Scopus
  38. A. Di Sabatino, S. L. F. Pender, C. L. Jackson et al., “Functional modulation of Crohn's disease myofibroblasts by anti-tumor necrosis factor antibodies,” Gastroenterology, vol. 133, no. 1, pp. 137–149, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Kierkus, M. Dadalski, E. Szymanska, et al., “The impact of infliximab induction therapy on mucosal healing and clinical remission in Polish pediatric patients with moderate-to-severe Crohn's disease,” European Journal of Gastroenterology & Hepatology, vol. 24, no. 5, pp. 495–500, 2012. View at Publisher · View at Google Scholar
  40. L. Guidi, M. Costanzo, M. Ciarniello, et al., “Increased levels of NF-kappaB inhibitors (IkappaBalpha and IkappaBgamma) in the intestinal mucosa of Crohn's disease patients during infliximab treatment,” International Journal of Immunopathology and Pharmacology, vol. 18, no. 1, pp. 155–164, 2005.
  41. G. H. Waetzig, D. Seegert, P. Rosenstiel, S. Nikolaus, and S. Schreiber, “p38 mitogen-activated protein kinase is activated and linked to TNF-α signaling in inflammatory bowel disease,” Journal of Immunology, vol. 168, no. 10, pp. 5342–5351, 2002. View at Scopus
  42. C. Steenholdt, M. Svenson, K. Bendtzen, O. A. Thomsen, J. Brynskov, and M. A. Ainsworth, “Severe infusion reactions to infliximab: aetiology, immunogenicity and risk factors in patients with inflammatory bowel disease,” Alimentary Pharmacology and Therapeutics, vol. 34, no. 1, pp. 51–58, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. M. Sherlock, R. Bandsma, K. Ota, M. Kirby-Allen, and A. Griffiths, “Severe neutropenia following infliximab treatment in a child with ulcerative colitis,” Inflammatory Bowel Diseases, vol. 17, no. 2, pp. E17–E18, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. G. Veereman-Wauters, L. de Ridder, G. Veres, et al., “Risk of infection and prevention in pediatric patients with IBD: ESPGHAN IBD Porto Group commentary,” Journal of Pediatric Gastroenterology & Nutrition, vol. 54, no. 6, pp. 830–837, 2012. View at Publisher · View at Google Scholar
  45. S. Schneeweiss, J. Korzenik, D. H. Solomon, C. Canning, J. Lee, and B. Bressler, “Infliximab and other immunomodulating drugs in patients with inflammatory bowel disease and the risk of serious bacterial infections,” Alimentary Pharmacology and Therapeutics, vol. 30, no. 3, pp. 253–264, 2009. View at Publisher · View at Google Scholar · View at Scopus
  46. E. Miele, J. E. Markowitz, P. Mamula, and R. N. Baldassano, “Human antichimeric antibody in children and young adults with inflammatory bowel disease receiving infliximab,” Journal of Pediatric Gastroenterology and Nutrition, vol. 38, no. 5, pp. 502–508, 2004. View at Scopus
  47. L. Biancone, C. Petruzziello, A. Orlando et al., “Cancer in Crohn's disease patients treated with infliximab: a long-term multicenter matched pair study,” Inflammatory Bowel Diseases, vol. 17, no. 3, pp. 758–766, 2011. View at Publisher · View at Google Scholar · View at Scopus
  48. J. Kelsen, A. Dige, H. Schwindt et al., “Infliximab induces clonal expansion of γδ-T cells in Crohn's disease: a predictor of lymphoma risk?” PLoS One, vol. 6, no. 3, article e17890, 2011. View at Publisher · View at Google Scholar · View at Scopus
  49. M. Iborra, B. Beltrán, G. Bastida, M. Aguas, and P. Nos, “Infliximab and adalimumab-induced psoriasis in Crohn's disease: a paradoxical side effect,” Journal of Crohn's and Colitis, vol. 5, no. 2, pp. 157–161, 2011. View at Publisher · View at Google Scholar · View at Scopus
  50. S. R. Targan, S. B. Hanauer, S. J. H. Van Deventer et al., “A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor α for Crohn's disease,” The New England Journal of Medicine, vol. 337, no. 15, pp. 1029–1035, 1997. View at Publisher · View at Google Scholar · View at Scopus
  51. S. B. Hanauer, B. G. Feagan, G. R. Lichtenstein et al., “Maintenance infliximab for Crohn's disease: the ACCENT I randomised trial,” Lancet, vol. 359, no. 9317, pp. 1541–1549, 2002. View at Publisher · View at Google Scholar · View at Scopus
  52. S. Desilva, G. Kaplan, and R. Panaccione, “Sequential therapies for Crohn's disease: optimizing conventional and biologic strategies,” Reviews in Gastroenterological Disorders, vol. 8, no. 2, pp. 109–116, 2008. View at Scopus
  53. A. Swaminath and S. Lichtiger, “Dilation of colonic strictures by intralesional injection of infliximab in patients with Crohn's colitis,” Inflammatory Bowel Diseases, vol. 14, no. 2, pp. 213–216, 2008. View at Publisher · View at Google Scholar · View at Scopus
  54. C. Taxonera, D. A. Schwartz, and D. García-Olmo, “Emerging treatments for complex perianal fistula in Crohn's disease,” World Journal of Gastroenterology, vol. 15, no. 34, pp. 4263–4272, 2009. View at Publisher · View at Google Scholar · View at Scopus
  55. B. E. Sands, F. H. Anderson, C. N. Bernstein et al., “Infliximab maintenance therapy for fistulizing Crohn's disease,” The New England Journal of Medicine, vol. 350, no. 9, pp. 876–885, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. P. Rutgeerts, W. J. Sandborn, B. G. Feagan et al., “Infliximab for induction and maintenance therapy for ulcerative colitis,” The New England Journal of Medicine, vol. 353, no. 23, pp. 2462–2476, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. W. J. Sandborn, P. Rutgeerts, B. G. Feagan et al., “Colectomy rate comparison after treatment of ulcerative colitis with placebo or infliximab,” Gastroenterology, vol. 137, no. 4, pp. 1250–1260, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. G. Bamias, M. Marini, C. A. Moskaluk et al., “Down-regulation of intestinal lymphocyte activation and Th1 cytokine production by antibiotic therapy in a murine model of Crohn's disease,” Journal of Immunology, vol. 169, no. 9, pp. 5308–5314, 2002. View at Scopus
  59. D. Hollander, “Crohn's disease, TNF-α, and the leaky gut. The chicken or the egg?” American Journal of Gastroenterology, vol. 97, no. 8, pp. 1867–1868, 2002. View at Publisher · View at Google Scholar · View at Scopus
  60. T. Olsen, G. Cui, R. Goll, A. Husebekk, and J. Florholmen, “Infliximab therapy decreases the levels of TNF-α and IFN-γ mRNA in colonic mucosa of ulcerative colitis,” Scandinavian Journal of Gastroenterology, vol. 44, no. 6, pp. 727–735, 2009. View at Publisher · View at Google Scholar · View at Scopus
  61. Y. Xu, N. H. Hunt, and S. Bao, “The role of granulocyte macrophage-colony-stimulating factor in acute intestinal inflammation,” Cell Research, vol. 18, no. 12, pp. 1220–1229, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. Y. R. Mahida, “The key role of macrophages in the immunopathogenesis of inflammatory bowel disease,” Inflammatory Bowel Diseases, vol. 6, no. 1, pp. 21–33, 2000. View at Scopus
  63. H. Ogata and T. Hibi, “Cytokine and anti-cytokine therapies for inflammatory bowel disease,” Current Pharmaceutical Design, vol. 9, no. 14, pp. 1107–1113, 2003. View at Publisher · View at Google Scholar · View at Scopus
  64. J. Itoh, C. de la Motte, S. A. Strong, A. D. Levine, and C. Fiocchi, “Decreased Bax expression by mucosal T cells favours resistance to apoptosis in Crohn's disease,” Gut, vol. 49, no. 1, pp. 35–41, 2001. View at Publisher · View at Google Scholar · View at Scopus
  65. I. J. Fuss, C. Becker, Z. Yang et al., “Both IL-12p70 and IL-23 are synthesized during active Crohn's disease and are down-regulated by treatment with anti-IL-12 p40 monoclonal antibody,” Inflammatory Bowel Diseases, vol. 12, no. 1, pp. 9–15, 2006. View at Publisher · View at Google Scholar · View at Scopus
  66. A. Bai, N. Lu, Y. Guo, J. Chen, and Z. Liu, “Modulation of inflammatory response via α2-adrenoceptor blockade in acute murine colitis,” Clinical and Experimental Immunology, vol. 156, no. 2, pp. 353–362, 2009. View at Publisher · View at Google Scholar · View at Scopus
  67. T. Kobayashi, S. Okamoto, T. Hisamatsu et al., “IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease,” Gut, vol. 57, no. 12, pp. 1682–1689, 2008. View at Publisher · View at Google Scholar · View at Scopus
  68. K. Matsumura, H. Nakase, S. Yamamoto et al., “Modulation of the Th1/Th2 balance by infliximab improves hyperthyroidism associated with a flareup of ulcerative colitis,” Inflammatory Bowel Diseases, vol. 15, no. 7, pp. 967–968, 2009. View at Publisher · View at Google Scholar · View at Scopus
  69. N. A. Hering and J. D. Schulzke, “Therapeutic options to modulate barrier defects in inflammatory bowel disease,” Digestive Diseases, vol. 27, no. 4, pp. 450–454, 2009. View at Publisher · View at Google Scholar · View at Scopus
  70. J. D. Schulzke, C. Bojarski, S. Zeissig, F. Heller, A. H. Gitter, and M. Fromm, “Disrupted barrier function through epithelial cell apoptosis,” Annals of the New York Academy of Sciences, vol. 1072, pp. 288–299, 2006. View at Publisher · View at Google Scholar · View at Scopus
  71. S. Danese, M. Sans, C. de la Motte et al., “Angiogenesis as a novel component of inflammatory bowel disease pathogenesis,” Gastroenterology, vol. 130, no. 7, pp. 2060–2073, 2006. View at Publisher · View at Google Scholar · View at Scopus
  72. C. Medina and M. W. Radomski, “Role of matrix metalloproteinases in intestinal inflammation,” Journal of Pharmacology and Experimental Therapeutics, vol. 318, no. 3, pp. 933–938, 2006. View at Publisher · View at Google Scholar · View at Scopus
  73. K. Brew and H. Nagase, “The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity,” Biochimica et Biophysica Acta, vol. 1803, no. 1, pp. 55–71, 2010. View at Publisher · View at Google Scholar · View at Scopus
  74. G. Pineton De Chambrun, L. Peyrin-Biroulet, M. Lémann, and J. F. Colombel, “Clinical implications of mucosal healing for the management of IBD,” Nature Reviews Gastroenterology and Hepatology, vol. 7, no. 1, pp. 15–29, 2010. View at Publisher · View at Google Scholar · View at Scopus
  75. I. Atreya, R. Atreya, and M. F. Neurath, “NF-κB in inflammatory bowel disease,” Journal of Internal Medicine, vol. 263, no. 6, pp. 591–596, 2008. View at Publisher · View at Google Scholar · View at Scopus
  76. E. Hollenbach, M. Neumann, M. Vieth, A. Roessner, P. Malfertheiner, and M. Naumann, “Inhibition of p38 MAP kinase- and RICK/NF-κB-signaling suppresses inflammatory bowel disease,” The FASEB Journal, vol. 18, no. 13, pp. 1550–1552, 2004. View at Publisher · View at Google Scholar · View at Scopus
  77. H. Bantel, W. Domschke, K. Schulze-Osthoff, B. Kaskas, and M. Gregor, “Abnormal activation of transcription factor NF-κB involved in steroid resistance in chronic inflammatory bowel disease,” American Journal of Gastroenterology, vol. 95, no. 7, pp. 1845–1846, 2000. View at Publisher · View at Google Scholar · View at Scopus
  78. O. J. Broom, B. Widjaya, J. Troelsen, J. Olsen, and O. H. Nielsen, “Mitogen activated protein kinases: a role in inflammatory bowel disease?” Clinical and Experimental Immunology, vol. 158, no. 3, pp. 272–280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  79. J. M. Wilmanski, T. Petnicki-Ocwieja, and K. S. Kobayashi, “NLR proteins: integral members of innate immunity and mediators of inflammatory diseases,” Journal of Leukocyte Biology, vol. 83, no. 1, pp. 13–30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  80. A. Hoffmeyer, A. Grosse-Wilde, E. Flory et al., “Different mitogen-activated protein kinase signaling pathways cooperate to regulate tumor necrosis factor α gene expression in T lymphocytes,” Journal of Biological Chemistry, vol. 274, no. 7, pp. 4319–4327, 1999. View at Publisher · View at Google Scholar · View at Scopus
  81. C. A. Siegel and G. Y. Melmed, “Predicting response to anti-TNF agents for the treatment of Crohn's disease,” Therapeutic Advances in Gastroenterology, vol. 2, no. 4, pp. 245–251, 2009. View at Publisher · View at Google Scholar · View at Scopus
  82. S. Vermeire, E. Louis, A. Carbonez et al., “Demographic and clinical parameters influencing the short-term outcome of anti-tumor necrosis factor (infliximab) treatment in Crohn's disease,” American Journal of Gastroenterology, vol. 97, no. 9, pp. 2357–2363, 2002. View at Publisher · View at Google Scholar · View at Scopus
  83. M. A. Parsi, J. Achkar, S. Richardson et al., “Predictors of response to infliximab in patients with Crohn's disease,” Gastroenterology, vol. 123, no. 3, pp. 707–713, 2002. View at Publisher · View at Google Scholar · View at Scopus
  84. I. D. R. Arnott, G. McNeill, and J. Satsangi, “An analysis of factors influencing short-term and sustained response to infliximab treatment for Crohn's disease,” Alimentary Pharmacology and Therapeutics, vol. 17, no. 12, pp. 1451–1457, 2003. View at Publisher · View at Google Scholar · View at Scopus
  85. D. S. Fefferman, P. J. Lodhavia, M. Alsahli et al., “Smoking and immunomodulators do not influence the response or duration of response to infliximab in Chrohn's disease,” Inflammatory Bowel Diseases, vol. 10, no. 4, pp. 346–351, 2004. View at Publisher · View at Google Scholar · View at Scopus
  86. T. Hlavaty, M. Pierik, L. Henckaerts et al., “Polymorphisms in apoptosis genes predict response to infliximab therapy in luminal and fistulizing Crohn's disease,” Alimentary Pharmacology and Therapeutics, vol. 22, no. 7, pp. 613–626, 2005. View at Publisher · View at Google Scholar · View at Scopus
  87. A. Franke, D. P. B. McGovern, J. C. Barrett et al., “Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci,” Nature Genetics, vol. 42, no. 12, pp. 1118–1125, 2010. View at Publisher · View at Google Scholar · View at Scopus
  88. M. C. Dubinsky, L. Mei, M. Friedman et al., “Genome Wide Association (GWA) predictors of anti-TNFα therapeutic responsiveness in pediatric inflammatory bowel desease,” Inflammatory Bowel Diseases, vol. 16, no. 8, pp. 1357–1366, 2010. View at Publisher · View at Google Scholar · View at Scopus
  89. K. R. Parashette, R. C. Makam, and C. Cuffari, “Infliximab therapy in pediatric Crohn's disease: a review,” Clinical and Experimental Gastroenterology, vol. 3, no. 1, pp. 57–63, 2010. View at Scopus
  90. G. Bouchaud, E. Mortier, M. Flamant et al., “Interleukin-15 and its soluble receptor mediate the response to infliximab in patients with Crohn's disease,” Gastroenterology, vol. 138, no. 7, pp. 2378–2387, 2010. View at Publisher · View at Google Scholar · View at Scopus
  91. M. A. A. Siddiqui, “The efficacy and tolerability of newer biologics in rheumatoid arthritis: best current evidence,” Current Opinion in Rheumatology, vol. 19, no. 3, pp. 308–313, 2007. View at Publisher · View at Google Scholar · View at Scopus
  92. G. Gartlehner, R. A. Hansen, B. L. Jonas, P. Thieda, and K. N. Lohr, “Biologics for the treatment of juvenile idiopathic arthritis: a systematic review and critical analysis of the evidence,” Clinical Rheumatology, vol. 27, no. 1, pp. 67–76, 2008. View at Publisher · View at Google Scholar · View at Scopus