About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 581684, 12 pages
http://dx.doi.org/10.1155/2013/581684
Review Article

Advances in the Applications of Polyhydroxyalkanoate Nanoparticles for Novel Drug Delivery System

Institute of Life Sciences and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 446-701, Republic of Korea

Received 5 January 2013; Accepted 9 June 2013

Academic Editor: Claudete J. Valduga

Copyright © 2013 Anupama Shrivastav et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. Cammas, M.-M. Béar, L. Moine et al., “Polymers of malic acid and 3-alkylmalic acid as synthetic PHAs in the design of biocompatible hydrolyzable devices,” International Journal of Biological Macromolecules, vol. 25, no. 1–3, pp. 273–282, 1999. View at Publisher · View at Google Scholar · View at Scopus
  2. S. Y. Lee and H. N. Chang, “Production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli strains: genetic and fermentation studies,” Canadian Journal of Microbiology, vol. 41, no. 1, pp. 207–215, 1995. View at Scopus
  3. M. Lemoigne, “Produits de deshydration et de polymerisation de lacide β-oxybutyrique,” Bulletin de la Societe de Chimie Biologique, vol. 8, pp. 770–782, 1926.
  4. L. L. Madison and G. W. Huisman, “Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic,” Microbiology and Molecular Biology Reviews, vol. 63, no. 1, pp. 21–53, 1999. View at Scopus
  5. R. Griebel, Z. Smith, and J. M. Merrick, “Metabolism of Poly-β-hydroxybutyrate. I. Purification, composition, and properties of native poly-β-hydroxybutyrate granules from bacillus megaterium,” Biochemistry, vol. 7, no. 10, pp. 3676–3681, 1968. View at Scopus
  6. C. Errico, C. Bartoli, F. Chiellini, and E. Chiellini, “Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery,” Journal of Biomedicine and Biotechnology, vol. 2009, Article ID 571702, 10 pages, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. G.-Q. Chen, “A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry,” Chemical Society Reviews, vol. 38, no. 8, pp. 2434–2446, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. A. Steinbüchel and B. Füchtenbusch, “Bacterial and other biological systems for polyester production,” Trends in Biotechnology, vol. 16, no. 10, pp. 419–427, 1998. View at Publisher · View at Google Scholar · View at Scopus
  9. A. Steinbuchel and H. G. Schlegel, “Physiology and molecular genetics of poly(β-hydroxy-alkanoic acid) synthesis in Alcaligenes eutrophus,” Molecular Microbiology, vol. 5, no. 3, pp. 535–542, 1991. View at Scopus
  10. T. Keshavarz and I. Roy, “Polyhydroxyalkanoates: bioplastics with a green agenda,” Current Opinion in Microbiology, vol. 13, no. 3, pp. 321–326, 2010. View at Publisher · View at Google Scholar · View at Scopus
  11. B. Kessler and B. Witholt, “Factors involved in the regulatory network of polyhydroxyalkanoate metabolism,” Journal of Biotechnology, vol. 86, no. 2, pp. 97–104, 2001. View at Publisher · View at Google Scholar · View at Scopus
  12. Y. Poirier, C. Nawrath, and C. Somerville, “Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants,” Bio/Technology, vol. 13, no. 2, pp. 142–150, 1995. View at Scopus
  13. A. J. Anderson and E. A. Dawes, “Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates,” Microbiological Reviews, vol. 54, no. 4, pp. 450–472, 1990. View at Scopus
  14. G. A. R. Nobes, R. H. Marchessault, and D. Maysinger, “Polyhydroxyalkanoates: materials for delivery systems,” Drug Delivery, vol. 5, no. 3, pp. 167–177, 1998. View at Scopus
  15. M. Shah, N. Ullah, M. H. Choi, M. O. Kim, and S. C. Yoon, “Amorphous amphiphilic P(3HV-co-4HB)-b-mPEG block copolymer synthesized from bacterial copolyester via melt transesterification: nanoparticle preparation, cisplatin-loading for cancer therapy and in vitro evaluation,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 80, no. 3, pp. 518–527, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. D. Byrom, “Polymer synthesis by microorganisms: technology and economics,” Trends in Biotechnology, vol. 5, no. 9, pp. 246–250, 1987. View at Scopus
  17. Y. Doi, Y. Kanesawa, M. Kunioka, and T. Saito, “Biodegradation of microbial copolyesters: poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and poly(3-hydroxybutyrate-co-4-hydroxybutyrate),” Macromolecules, vol. 23, no. 1, pp. 26–31, 1990. View at Scopus
  18. Y. Saito and Y. Doi, “Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans,” International Journal of Biological Macromolecules, vol. 16, no. 2, pp. 99–104, 1994. View at Publisher · View at Google Scholar · View at Scopus
  19. K. Sudesh, H. Abe, and Y. Doi, “Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters,” Progress in Polymer Science, vol. 25, no. 10, pp. 1503–1555, 2000. View at Publisher · View at Google Scholar · View at Scopus
  20. E. Pişkin, “Biodegradable polymers as biomaterials,” Journal of Biomaterials Science-Polymer, vol. 6, no. 9, pp. 775–795, 1995. View at Scopus
  21. K. Mukai, Y. Doi, Y. Sema, and K. Tomita, “Substrate specificities in hydrolysis of polyhydroxyalkanoates by microbial esterases,” Biotechnology Letters, vol. 15, no. 6, pp. 601–604, 1993. View at Scopus
  22. M. Löbler, M. Sass, P. Michel, U. T. Hopt, C. Kunze, and K.-P. Schmitz, “Differential gene expression after implantation of biomaterials into rat gastrointestine,” Journal of Materials Science, vol. 10, no. 12, pp. 797–799, 1999. View at Publisher · View at Google Scholar · View at Scopus
  23. M. Zinn, B. Witholt, and T. Egli, “Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate,” Advanced Drug Delivery Reviews, vol. 53, no. 1, pp. 5–21, 2001. View at Publisher · View at Google Scholar · View at Scopus
  24. R. N. Reusch, “Poly-β-hydroxybutyrate/calcium polyphosphate complexes in eukaryotic membranes,” Proceedings of the Society for Experimental Biology and Medicine, vol. 191, no. 4, pp. 377–381, 1989. View at Scopus
  25. G.-Q. Chen and Q. Wu, “The application of polyhydroxyalkanoates as tissue engineering materials,” Biomaterials, vol. 26, no. 33, pp. 6565–6578, 2005. View at Publisher · View at Google Scholar · View at Scopus
  26. S. P. Valappil, S. K. Misra, A. Boccaccini, and I. Roy, “Biomedical applications of polyhydroxyalkanoates, an overview of animal testing and in vivo responses,” Expert Review of Medical Devices, vol. 3, no. 6, pp. 853–868, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. B. Hazer, “Amphiphilic poly(3-hydroxy alkanoate)s: potential candidates for medical applications,” International Journal of Polymer Science, vol. 2010, Article ID 423460, 8 pages, 2010. View at Publisher · View at Google Scholar
  28. S. K. Misra, S. P. Valappil, I. Roy, and A. R. Boccaccini, “Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications,” Biomacromolecules, vol. 7, no. 8, pp. 2249–2258, 2006. View at Publisher · View at Google Scholar · View at Scopus
  29. Q. Wu, Y. Wang, and G.-Q. Chen, “Medical application of microbial biopolyesters polyhydroxyalkanoates,” Artificial Cells, Blood Substitutes, and Biotechnology, vol. 37, no. 1, pp. 1–12, 2009. View at Publisher · View at Google Scholar · View at Scopus
  30. E. I. Shishatskaya and T. G. Volova, “A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures,” Journal of Materials Science, vol. 15, no. 8, pp. 915–923, 2004. View at Publisher · View at Google Scholar · View at Scopus
  31. X. Wei, Y.-J. Hu, W.-P. Xie, R.-L. Lin, and G.-Q. Chen, “Influence of poly(3-hydroxybutyrate-co-4-hydroxybutyrate-co-3-hydroxyhexanoate) on growth and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells,” Journal of Biomedical Materials Research A, vol. 90, no. 3, pp. 894–905, 2009. View at Scopus
  32. G.-Z. Ji, X. Wei, and G.-Q. Chen, “Growth of human umbilical cord Wharton's jelly-derived mesenchymal stem cells on the terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3- hydroxyhexanoate),” Journal of Biomaterials Science-Polymer, vol. 20, no. 3, pp. 325–339, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. V. I. Sevastianov, N. V. Perova, E. I. Shishatskaya, G. S. Kalacheva, and T. G. Volova, “Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood,” Journal of Biomaterials Science-Polymer, vol. 14, no. 10, pp. 1029–1042, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. C. J. Brigham and A. J. Sinskey, “Applications of polyhydroxyalkanoates in the medical industry,” International Journal of Biotechnology For Wellness Industries, vol. 1, no. 1, pp. 53–60, 2012.
  35. W. Korsatko, B. Wabnegg, and H. M. Tillian, “Poly-D-(-)-3-hydroxybutyric acid: a biodegradable carrier for long term medication dosage. II. Comm.: the biodegradation in animal organism and in-vitro - in-vivo correlation of the liberation of pharmaceuticals from parenteral matrix retard tablets,” Pharmazeutische Industrie, vol. 45, no. 10, pp. 1004–1007, 1983. View at Scopus
  36. G. Ciardelli, B. Saad, T. Hirt et al., “Phagocytosis and biodegradation of short-chain poly [(R)-3-hydroxybutyric acid] particles in macrophage cell line,” Journal of Materials Science, vol. 6, no. 12, pp. 725–730, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. C. W. Pouton and S. Akhtar, “Biosynthetic polyhydroxyalkanoates and their potential in drug delivery,” Advanced Drug Delivery Reviews, vol. 18, no. 2, pp. 133–162, 1996. View at Publisher · View at Google Scholar · View at Scopus
  38. K. Juni and M. Nakano, “Poly(hydroxy acids) in drug delivery,” Critical Reviews in Therapeutic Drug Carrier Systems, vol. 3, no. 3, pp. 209–232, 1987. View at Scopus
  39. C. W. Pouton, J. E. Kennedy, L. J. Notarianni, and P. L. Gould, “Biocompatibility of polyhydroxy-butyrate and related copolymers,” in Proceedings of the International Symposium on Controlled Release Bioactive Materials, vol. 15, pp. 179–180, 1988.
  40. R. W. Lenz and R. H. Marchessault, “Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology,” Biomacromolecules, vol. 6, no. 1, pp. 1–8, 2005. View at Publisher · View at Google Scholar · View at Scopus
  41. G. A. R. Nobes, R. H. Marchessault, and D. Maysinger, “Polyhydroxyalkanoates: materials for delivery systems,” Drug Delivery, vol. 5, no. 3, pp. 167–177, 1998. View at Scopus
  42. W. J. Orts, G. A. R. Nobes, J. Kawada, S. Nguyen, G.-E. Yu, and F. Ravenelle, “Poly(hydroxyalkanoates): biorefinery polymers with a whole range of applications. The work of Robert H. Marchessault,” Canadian Journal of Chemistry, vol. 86, no. 6, pp. 628–640, 2008. View at Publisher · View at Google Scholar · View at Scopus
  43. N. Gangrade and J. C. Price, “Poly(hydroxybutyrate-hydroxyvalerate) microspheres containing progesterone: preparation, morphology and release properties,” Journal of Microencapsulation, vol. 8, no. 2, pp. 185–202, 1991. View at Scopus
  44. P. L. Gould, S. J. Holland, and B. J. Tighe, “Polymers for biodegradable medical devices. IV. Hydroxybutyrate-valerate copolymers as non-disintegrating matrices for controlled-release oral dosage forms,” International Journal of Pharmaceutics, vol. 38, pp. 231–237, 1987. View at Scopus
  45. I. Gursel, F. Yagmurlu, F. Korkusuz, and V. Hasirci, “In vitro antibiotic release from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) rods,” Journal of Microencapsulation, vol. 19, no. 2, pp. 153–164, 2002. View at Publisher · View at Google Scholar · View at Scopus
  46. M. F. Yagmurlu, F. Korkusuz, I. Gursel, et al., “Sulbactam-cefoperazone polyhydroxybutyrate-co-hydroxyvalerate (PHBV) local antibiotic delivery system: in vivo effectiveness and biocompatibility in the treatment of implant-related experimental osteomyelitis,” Journal of Biomedical Materials Research, vol. 46, no. 4, pp. 494–503, 1999.
  47. F. Türesin, I. Gürsel, and V. Hasirci, “Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release,” Journal of Biomaterials Science-Polymer, vol. 12, no. 2, pp. 195–207, 2001. View at Publisher · View at Google Scholar · View at Scopus
  48. I. Gürsel, F. Korkusuz, F. Türesin, N. Gürdal Alaeddinoǧlu, and V. Hasirci, “In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis,” Biomaterials, vol. 22, no. 1, pp. 73–80, 2001. View at Publisher · View at Google Scholar · View at Scopus
  49. M. C. Bissery, F. A. Valeriote, and C. Thies, “Therapeutic efficacy of CCNU-loaded microspheres prepared from poly (D,L) lactide (PLA) or poly-B-hydroxybutyrate (PHB) against Lewis lung (LL) carcinoma,” Proceedings of the American Association for Cancer Research, vol. 26, 355 pages, 1985. View at Scopus
  50. M. Kubota, M. Nakano, and K. Juni, “Mechanism of enhancement of the release rate of aclarubicin from poly-β-hydroxybutyric acid microspheres by fatty acid esters,” Chemical and Pharmaceutical Bulletin, vol. 36, no. 1, pp. 333–337, 1988. View at Scopus
  51. D. Sendil, I. Gürsel, D. L. Wise, and V. Hasirci, “Antibiotic release from biodegradable PHBV microparticles,” Journal of Controlled Release, vol. 59, no. 2, pp. 207–217, 1999. View at Publisher · View at Google Scholar · View at Scopus
  52. E. I. Shishatskaya, A. V. Goreva, O. N. Voinova, E. V. Inzhevatkin, R. G. Khlebopros, and T. G. Volova, “Evaluation of antitumor activity of rubomycin deposited in absorbable polymeric microparticles,” Bulletin of Experimental Biology and Medicine, vol. 145, no. 3, pp. 358–361, 2008. View at Publisher · View at Google Scholar · View at Scopus
  53. F. Koosha, R. H. Muller, and S. S. Davis, “A continuous flow system for in vitro evaluation of drug-loaded biodegradable colloidal barriers,” Journal of Pharmacy and Pharmacology, vol. 40, 131 pages, 1988.
  54. T. Kawaguchi, A. Tsugane, K. Higashide et al., “Control of drug release with a combination of prodrug and polymer matrix: antitumor activity and release profiles of 2',3'-diacyl-5-fluoro-2'-deoxyuridine from poly(3-hydroxybutyrate) microspheres,” Journal of Pharmaceutical Sciences, vol. 81, no. 6, pp. 508–512, 1992. View at Publisher · View at Google Scholar · View at Scopus
  55. X.-Y. Lu, E. Ciraolo, R. Stefenia, G.-Q. Chen, Y. Zhang, and E. Hirsch, “Sustained release of PI3K inhibitor from PHA nanoparticles and in vitro growth inhibition of cancer cell lines,” Applied Microbiology and Biotechnology, vol. 89, no. 5, pp. 1423–1433, 2011. View at Publisher · View at Google Scholar · View at Scopus
  56. V. Peters and B. H. A. Rehm, “In vivo monitoring of PHA granule formation using GFP-labeled PHA synthases,” FEMS Microbiology Letters, vol. 248, no. 1, pp. 93–100, 2005. View at Publisher · View at Google Scholar · View at Scopus
  57. V. Peters and B. H. A. Rehm, “In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase,” Applied and Environmental Microbiology, vol. 72, no. 3, pp. 1777–1783, 2006. View at Publisher · View at Google Scholar · View at Scopus
  58. A. C. Jahns, R. G. Haverkamp, and B. H. A. Rehm, “Multifunctional inorganic-binding beads self-assembled inside engineered bacteria,” Bioconjugate Chemistry, vol. 19, no. 10, pp. 2072–2080, 2008. View at Publisher · View at Google Scholar · View at Scopus
  59. Y.-R. Kim, H.-J. Paik, C. K. Ober, G. W. Coates, and C. A. Batt, “Enzymatic surface-initiated polymerization: a novel approach for the in situ solid-phase synthesis of biocompatible polymer pol(3-hydroxybutyrate),” Biomacromolecules, vol. 5, no. 3, pp. 889–894, 2004. View at Publisher · View at Google Scholar · View at Scopus
  60. H.-J. Paik, Y.-R. Kim, R. N. Orth, C. K. Ober, G. W. Coates, and C. A. Batt, “End-functionalization of poly(3-hydroxybutyrate) via genetic engineering for solid surface modification,” Chemical Communications, no. 15, pp. 1956–1958, 2005. View at Publisher · View at Google Scholar · View at Scopus
  61. Y.-C. Yao, X.-Y. Zhan, J. Zhang et al., “A specific drug targeting system based on polyhydroxyalkanoate granule binding protein PhaP fused with targeted cell ligands,” Biomaterials, vol. 29, no. 36, pp. 4823–4830, 2008. View at Publisher · View at Google Scholar · View at Scopus
  62. C. Zhang, L. Q. Zhao, Y. F. Dong, X. Y. Zhang, J. Lin, and Z. Chen, “Folate-mediated poly(3-hydroxybutyrate-co-3-hydroxyoctanoate) nanoparticles for targeting drug delivery,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 76, no. 1, pp. 10–16, 2010. View at Publisher · View at Google Scholar · View at Scopus
  63. J. Lee, S.-G. Jung, C.-S. Park, H.-Y. Kim, C. A. Batt, and Y.-R. Kim, “Tumor-specific hybrid polyhydroxybutyrate nanoparticle: surface modification of nanoparticle by enzymatically synthesized functional block copolymer,” Bioorganic and Medicinal Chemistry Letters, vol. 21, no. 10, pp. 2941–2944, 2011. View at Publisher · View at Google Scholar · View at Scopus
  64. H. Yamamoto, Y. Kuno, S. Sugimoto, H. Takeuchi, and Y. Kawashima, “Surface-modified PLGA nanosphere with chitosan improved pulmonary delivery of calcitonin by mucoadhesion and opening of the intercellular tight junctions,” Journal of Controlled Release, vol. 102, no. 2, pp. 373–381, 2005. View at Publisher · View at Google Scholar · View at Scopus
  65. D. W. Bartlett, H. Su, I. J. Hildebrandt, W. A. Weber, and M. E. Davis, “Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, no. 39, pp. 15549–15554, 2007. View at Publisher · View at Google Scholar · View at Scopus
  66. K. F. Pirollo and E. H. Chang, “Does a targeting ligand influence nanoparticle tumor localization or uptake?” Trends in Biotechnology, vol. 26, no. 10, pp. 552–558, 2008. View at Publisher · View at Google Scholar · View at Scopus
  67. J. Shi, A. R. Votruba, O. C. Farokhzad, and R. Langer, “Nanotechnology in drug delivery and tissue engineering: from discovery to applications,” Nano Letters, vol. 10, no. 9, pp. 3223–3230, 2010. View at Publisher · View at Google Scholar · View at Scopus
  68. J. H. Eldridge, C. J. Hammond, J. A. Meulbroek, J. K. Staas, R. M. Gilley, and T. R. Tice, “Controlled vaccine release in the gut-associated lymphoid tissues. I. Orally administered biodegradable microspheres target the Peyer's patches,” Journal of Controlled Release, vol. 11, no. 1–3, pp. 205–214, 1990. View at Scopus
  69. H.-N. Kim, J. Lee, H.-Y. Kim, and Y.-R. Kim, “Enzymatic synthesis of a drug delivery system based on polyhydroxyalkanoate-protein block copolymers,” Chemical Communications, no. 46, pp. 7104–7106, 2009. View at Publisher · View at Google Scholar · View at Scopus