About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 582526, 9 pages
http://dx.doi.org/10.1155/2013/582526
Research Article

Neurogenesis and Increase in Differentiated Neural Cell Survival via Phosphorylation of Akt1 after Fluoxetine Treatment of Stem Cells

1Stem Cell and Tissue Engineering Department, Research Center for Science and Technology in Medicine (RCSTiM), Tehran University of Medical Sciences, Tehran, Iran
2Faculty of Medicine, Islamic Azad University, Mashhad Branch, Mashhad 19988-96953, Iran
3Medical Nanotechnology Department, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
4Rajaei Cardiovascular, Medical, and Research Centre, Iran University of Medical Sciences, P.O. Box 14185-615, Tehran, Iran

Received 10 April 2013; Revised 15 July 2013; Accepted 15 July 2013

Academic Editor: Paul Higgins

Copyright © 2013 Anahita Rahmani et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. M. Noureddini, J. Verdi, S. A. Mortazavi Tabatabaei, S. Sharif, and A. Shoae Hassani, “Human endometrial stem cell neurogenesis in response to NGF and bFGF,” Cell Biology International, vol. 36, no. 1, pp. 961–966, 2012.
  2. A. Shoae-Hassani, S. A. Mortazavi-Tabatabaei, S. Sharif, H. Rezaei-Khaligh, and J. Verdi, “DHEA provides a microenvironment for endometrial stem cells neurogenesis,” Medical Hypotheses, vol. 76, no. 6, pp. 843–846, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. H. A. Cameron, “Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus,” Neuroscience, vol. 61, no. 2, pp. 203–209, 1994. View at Publisher · View at Google Scholar · View at Scopus
  4. P.-M. Lledo, M. Alonso, and M. S. Grubb, “Adult neurogenesis and functional plasticity in neuronal circuits,” Nature Reviews Neuroscience, vol. 7, no. 3, pp. 179–193, 2006. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Ranganathan, E. R. Sawin, C. Trent, and H. R. Horvitz, “Mutations in the Caenorhabditis elegansserotonin reuptake transporter MOD-5 reveal serotonin-dependent and -independent activities of fluoxetine,” Journal of Neuroscience, vol. 21, no. 16, pp. 5871–5884, 2001. View at Scopus
  6. A. Abdipranoto, S. Wu, S. Stayte, and B. Vissel, “The role of neurogenesis in neurodegenerative diseases and its implications for therapeutic development,” CNS and Neurological Disorders-Drug Targets, vol. 7, no. 2, pp. 187–210, 2008. View at Publisher · View at Google Scholar · View at Scopus
  7. H. Dudek, S. R. Datta, T. F. Franke et al., “Regulation of neuronal survival by the serine-threonine protein kinase Akt,” Science, vol. 275, no. 5300, pp. 661–665, 1997. View at Publisher · View at Google Scholar · View at Scopus
  8. S. G. Kennedy, E. S. Kandel, T. K. Cross, and N. Hay, “Akt/protein kinase B inhibits cell death by preventing the release of cytochrome C from mitochondria,” Molecular and Cellular Biology, vol. 19, no. 8, pp. 5800–5810, 1999. View at Scopus
  9. A. Brunet, S. R. Datta, and M. E. Greenberg, “Transcription-dependent and—independent control of neuronal survival by the PI3K-Akt signaling pathway,” Current Opinion in Neurobiology, vol. 11, no. 3, pp. 297–305, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. T. F. Franke, C. P. Hornik, L. Segev, G. A. Shostak, and C. Sugimoto, “PI3K/Akt and apoptosis: size matters,” Oncogene, vol. 22, no. 56, pp. 8983–8998, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Shoae-Hassani, A. M. Seifalian, S. A. Mortazavi-Tabatabaei, S. Sharif, A. Azimi, and J. Verdi, “Differentiation of human endometrial stem cells into urothelial cells on a three-dimensional nanofibrous silk-collagen scaffold: an autologous cell resource for reconstruction of the urinary bladder wall,” Journal of Tissue Engineering and Regenerative Medicine, 2013. View at Publisher · View at Google Scholar
  12. C. E. Gargett, “Uterine stem cells: what is the evidence?” Human Reproduction Update, vol. 13, no. 1, pp. 87–101, 2007. View at Publisher · View at Google Scholar · View at Scopus
  13. A. Shoae-Hassani, S. A. Mortazavi-Tabatabaei, S. Sharif, S. Madadi, H. Rezaei-Khaligh, and J. Verdi, “Recombinant lambda bacteriophage displaying nanobody towards third domain of Her-II epitope inhibits proliferation of breast carcinoma SKBR-3 cell line,” Archivum Immunologiae et Therapiae Experimentalis, vol. 61, no. 1, pp. 75–83, 2013. View at Publisher · View at Google Scholar
  14. F. Karege, M. Schwald, and M. Cisse, “Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets,” Neuroscience Letters, vol. 328, no. 3, pp. 261–264, 2002. View at Publisher · View at Google Scholar · View at Scopus
  15. G. Mercier, A. M. Lennon, B. Renouf et al., “MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes,” Journal of Molecular Neuroscience, vol. 24, no. 2, pp. 207–216, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. F. Fumagalli, R. Molteni, F. Calabrese, A. Frasca, G. Racagni, and M. A. Riva, “Chronic fluoxetine administration inhibits extracellular signal-regulated kinase 1/2 phosphorylation in rat brain,” Journal of Neurochemistry, vol. 93, no. 6, pp. 1551–1560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  17. E. Ha, K. H. Jung, B.-K. Choe et al., “Fluoxetine increases the nitric oxide production via nuclear factor kappa B-mediated pathway in BV2 murine microglial cells,” Neuroscience Letters, vol. 397, no. 3, pp. 185–189, 2006. View at Publisher · View at Google Scholar · View at Scopus
  18. R. K. Choy and J. H. Thomas, “Fluoxetine-resistant mutants in C. elegans define a novel family of transmembrane proteins,” Molecular Cell, vol. 4, no. 2, pp. 143–152, 1999. View at Publisher · View at Google Scholar · View at Scopus
  19. C.-T. Lee, J. Chen, T. Hayashi et al., “A mechanism for the inhibition of neural progenitor cell proliferation by cocaine,” PLoS Medicine, vol. 5, no. 6, article e117, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. W. J. Ray, G. Bain, M. Yao, and D. I. Gottlieb, “CYP26, a novel mammalian cytochrome P450, is induced by retinoic acid and defines a new family,” Journal of Biological Chemistry, vol. 272, no. 30, pp. 18702–18708, 1997. View at Publisher · View at Google Scholar · View at Scopus
  21. D. Weinshenker, G. Garriga, and J. H. Thomas, “Genetic and pharmacological analysis of neurotransmitters controlling egg laying in C. elegans,” Journal of Neuroscience, vol. 15, no. 10, pp. 6975–6985, 1995. View at Scopus
  22. G. Schaarschmidt, F. Wegner, S. C. Schwarz, H. Schmidt, and J. Schwarz, “Characterization of voltage-gated potassium channels in human neural progenitor cells,” PLoS ONE, vol. 4, no. 7, Article ID e6168, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. M. W. de Oliveira, S. Martin, C. L. de Oliveira et al., “Eag1, Eag2, and SK3 potassium channel expression in the rat hippocampus after global transient brain ischemia,” Journal of Neuroscience Research, vol. 90, no. 3, pp. 632–640, 2012. View at Publisher · View at Google Scholar · View at Scopus
  24. M. S. Cho, Y.-E. Lee, J. Y. Kim et al., “Highly efficient and large-scale generation of functional dopamine neurons from human embryonic stem cells,” Proceedings of the National Academy of Sciences of the United States of America, vol. 105, no. 9, pp. 3392–3397, 2008. View at Publisher · View at Google Scholar · View at Scopus
  25. Y.-H. Rhee, J.-Y. Ko, M.-Y. Chang et al., “Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease,” Journal of Clinical Investigation, vol. 121, no. 6, pp. 2326–2335, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. A. Shoae-Hassani, S. Sharif, and J. Verdi, “The neurosteroid dehydroepiandrosterone could improve somatic cell reprogramming,” Cell Biology International, vol. 35, no. 1, pp. 1037–1041, 2011. View at Publisher · View at Google Scholar · View at Scopus
  27. D. S. Kwon, C. H. Kwon, J. H. Kim, J. S. Woo, J. S. Jung, and Y. K. Kim, “Signal transduction of MEK/ERK and PI3K/Akt activation by hypoxia/reoxygenation in renal epithelial cells,” European Journal of Cell Biology, vol. 85, no. 11, pp. 1189–1199, 2006. View at Publisher · View at Google Scholar · View at Scopus
  28. J. W. Kim, J. E. Lee, M. J. Kim, E.-G. Cho, S.-G. Cho, and E.-J. Choi, “Glycogen synthase kinase 3β is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1),” Journal of Biological Chemistry, vol. 278, no. 16, pp. 13995–14001, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. K. Frebel and S. Wiese, “Signalling molecules essential for neuronal survival and differentiation,” Biochemical Society Transactions, vol. 34, no. 6, pp. 1287–1290, 2006. View at Publisher · View at Google Scholar · View at Scopus
  30. H. E. Scharfman and R. Hen, “Is more neurogenesis always better?” Science, vol. 315, no. 5810, pp. 336–338, 2007. View at Publisher · View at Google Scholar · View at Scopus
  31. A. J. Rush, M. H. Trivedi, S. R. Wisniewski et al., “Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR*D report,” American Journal of Psychiatry, vol. 163, no. 11, pp. 1905–1917, 2006. View at Publisher · View at Google Scholar · View at Scopus