About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 583850, 9 pages
http://dx.doi.org/10.1155/2013/583850
Research Article

In Vitro and In Vivo Survival and Colonic Adhesion of Pediococcus acidilactici MTCC5101 in Human Gut

Department of Biotechnology, Punjabi University, Punjab, Patiala 147 002, India

Received 30 April 2013; Revised 13 August 2013; Accepted 14 August 2013

Academic Editor: Xiaoling Miao

Copyright © 2013 Praveen P. Balgir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. S. Neish, “Microbes in gastrointestinal health and disease,” Gastroenterology, vol. 136, no. 1, pp. 65–80, 2009. View at Publisher · View at Google Scholar · View at Scopus
  2. E. E. Vaughan, H. G. H. J. Heilig, K. Ben-Amor, and W. M. de Vos, “Diversity, vitality and activities of intestinal lactic acid bacteria and bifidobacteria assessed by molecular approaches,” FEMS Microbiology Reviews, vol. 29, no. 3, pp. 477–490, 2005. View at Publisher · View at Google Scholar · View at Scopus
  3. E. G. Zoetendal, E. E. Vaughan, and W. M. de Vos, “A microbial world within us,” Molecular Microbiology, vol. 59, no. 6, pp. 1639–1650, 2006. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Salminen, A. von Wright, L. Morelli et al., “Demonstration of safety of probiotics—a review,” International Journal of Food Microbiology, vol. 44, no. 1-2, pp. 93–106, 1998. View at Publisher · View at Google Scholar
  5. F. J. Carr, D. Chill, and N. Maida, “The lactic acid bacteria: a literature survey,” Critical Reviews in Microbiology, vol. 28, no. 4, pp. 281–370, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. S. P. Borriello, W. P. Hammes, W. Holzapfel et al., “Safety of probiotics that contain Lactobacilli or bifidobacteria,” Clinical Infectious Diseases, vol. 36, no. 6, pp. 775–780, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. Food and Agriculture Organization of the United Nations-World Health Organization Working Group, “Guidelines for the evaluation of probiotics in foods,” Report of a Joint FAO/WHO Working Group on Drafting Guidelines for the Evaluation of Probiotics in Food, World Health Organization, Geneva, Switzerland, 2002.
  8. J. Ezendam and H. van Loveren, “Probiotics: immunomodulation and evaluation of safety and efficacy,” Nutrition Reviews, vol. 64, no. 1, pp. 1–14, 2006. View at Publisher · View at Google Scholar · View at Scopus
  9. S. Lebeer, J. Vanderleyden, and S. C. J. de Keersmaecker, “Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens,” Nature Reviews Microbiology, vol. 8, no. 3, pp. 171–184, 2010. View at Publisher · View at Google Scholar · View at Scopus
  10. M. C. Collado, E. Isolauri, S. Salminen, and Y. Sanz, “The impact of probiotic on gut health,” Current Drug Metabolism, vol. 10, no. 1, pp. 68–78, 2009. View at Publisher · View at Google Scholar · View at Scopus
  11. S. Lebeer, J. Vanderleyden, and S. C. J. de Keersmaecker, “Genes and molecules of Lactobacilli supporting probiotic action,” Microbiology and Molecular Biology Reviews, vol. 72, no. 4, pp. 728–764, 2008. View at Publisher · View at Google Scholar · View at Scopus
  12. B. Kaur and P. P. Balgir, “Purification, characterization and antimicrobial range of bacteriocin obtained from an isolate of Pediococcus spp.,” Journal of Punjab Academy of Sciences, vol. 1, no. 2, pp. 139–144, 2004.
  13. B. Kaur and P. P. Balgir, “Pediocin CP2 gene localization to plasmid pCP289 of Pediococcus acidilactici MTCC 5101,” Internet Journal of Microbiology, vol. 3, no. 2, 2007.
  14. B. Kaur and P. P. Balgir, “Biopreservative potential of a broad-range pediocin CP2 obtained from Pediococcus acidilactici MTCC 5101,” Asian Journal of Microbiology, Biotechnology and Environmental Sciences, vol. 10, no. 2, pp. 439–444, 2008. View at Scopus
  15. B. Kumar, P. P. Balgir, B. Kaur, B. Mittu, and A. Chauhan, “In vitro cytotoxicity of native and rec-pediocin CP2 against cancer cell lines: a comparative study,” Pharmaceutical Analytical Acta, vol. 1, no. 6, article 316, 2012.
  16. J. C. de Man, M. Rogosa, and M. E. Sharpe, “A medium for the cultivation of Lactobacilli,” Journal of Applied Bacteriology, vol. 23, no. 1, pp. 130–135, 1960. View at Publisher · View at Google Scholar
  17. M.-F. Bernet, D. Brassart, J.-R. Neeser, and A. L. Servin, “Adhesion of human bifidobacterial strains to cultured human intestinal epithelial cells and inhibition of enteropathogen-cell interactions,” Applied and Environmental Microbiology, vol. 59, no. 12, pp. 4121–4128, 1993. View at Scopus
  18. F. Braet, R. de Zanger, and E. Wisse, “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells,” Journal of Microscopy, vol. 186, no. 1, pp. 84–87, 1997. View at Scopus
  19. J. Berkson, T. B. Magath, and M. Hurn, “The error of estimate of the blood cell count as made with the hemocytometer,” The American Journal of Physiology, vol. 128, pp. 309–323, 1939.
  20. M. Elli, M. L. Callegari, S. Ferrari et al., “Survival of yogurt bacteria in the human gut,” Applied and Environmental Microbiology, vol. 72, no. 7, pp. 5113–5117, 2006. View at Publisher · View at Google Scholar · View at Scopus
  21. A. C. Ouwehand, T. Kurvinen, and P. Rissanen, “Use of a probiotic Bifidobacterium in a dry food matrix, an in vivo study,” International Journal of Food Microbiology, vol. 95, no. 1, pp. 103–106, 2004. View at Publisher · View at Google Scholar · View at Scopus
  22. J. M. Laparra and Y. Sanz, “Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium,” Letters in Applied Microbiology, vol. 49, no. 6, pp. 695–701, 2009. View at Publisher · View at Google Scholar · View at Scopus
  23. R. K. Duary, M. A. Bhausaheb, V. K. Batish, and S. Grover, “Anti-inflammatory and immunomodulatory efficacy of indigenous probiotic Lactobacillus plantarum Lp91 in colitis mouse model,” Molecular Biology Reports, vol. 39, no. 4, pp. 4765–4775, 2012. View at Publisher · View at Google Scholar
  24. W. Turpin, C. Humblot, M. Noordine, M. Thomas, and J. Guyot, “Lactobacillaceae and cell adhesion: genomic and functional screening,” PLoS ONE, vol. 7, no. 5, Article ID e38034, 2012.
  25. S. Gonzalez, G. Albarracin, M. L. de Ruiz Pesce et al., “Prevention of infantile diarrhoea by fermented milk,” Microbiologie, Aliments, Nutrition, vol. 8, pp. 349–354, 1990.
  26. M. Saxelin, M. Ahokas, and S. Salminen, “Dose response on the faecal colonisation of Lactobacillus strain GG administered in two different formulations,” Microbial Ecology Health Diseases, vol. 6, no. 3, pp. 119–122, 1993. View at Publisher · View at Google Scholar
  27. E. Isolauri, T. Arvola, Y. Sutas, E. Moilanen, and S. Salminen, “Probiotics in the management of atopic eczema,” Clinical and Experimental Allergy, vol. 30, no. 11, pp. 1604–1610, 2000. View at Scopus
  28. S. Fujiwara, Y. Seto, A. Kimura, and H. Hashiba, “Intestinal transit of an orally administered streptomycin-rifampicin-resistant variant of Bifidobacterium longum SBT2928: its long-term survival and effect on the intestinal microflora and metabolism,” Journal of Applied Microbiology, vol. 90, no. 1, pp. 43–52, 2001. View at Publisher · View at Google Scholar · View at Scopus
  29. H. Szajewska and J. Z. Mrukowicz, “Probiotics in the treatment and prevention of acute infectious diarrhea in infants and children: a systematic review of published randomized, double-blind, placebo-controlled trials,” Journal of Pediatric Gastroenterology and Nutrition, vol. 33, no. 4, pp. S17–S25, 2001. View at Publisher · View at Google Scholar · View at Scopus
  30. C. de Champs, N. Maroncle, D. Balestrino, C. Rich, and C. Forestier, “Persistence of colonization of intestinal mucosa by a probiotic strain, Lactobacillus casei subsp. rhamnosus Lcr35, after oral consumption,” Journal of Clinical Microbiology, vol. 41, no. 3, pp. 1270–1273, 2003. View at Publisher · View at Google Scholar · View at Scopus
  31. N. Valeur, P. Engel, N. Carbajal, E. Connolly, and K. Ladefoged, “Colonization and immunomodulation by Lactobacillus reuteri ATCC 55730 in the human gastrointestinal tract,” Applied and Environmental Microbiology, vol. 70, no. 2, pp. 1176–1181, 2004. View at Publisher · View at Google Scholar · View at Scopus
  32. J. M. Saavedra, N. A. Bauman, I. Oung, J. A. Perman, and R. H. Yolken, “Feeding of Bifidobacterium bifidum and Streptococcus thermophilus to infants in hospital for prevention of diarrhoea and shedding of rotavirus,” The Lancet, vol. 344, no. 8929, pp. 1046–1049, 1994. View at Publisher · View at Google Scholar · View at Scopus
  33. J. Chouraqui, L. van Egroo, and M. Fichot, “Acidified milk formula supplemented with Bifidobacterium lactis: impact on infant diarrhea in residential care settings,” Journal of Pediatric Gastroenterology and Nutrition, vol. 38, no. 3, pp. 288–292, 2004. View at Scopus
  34. Z. Weizman, G. Asli, and A. Alsheikh, “Effect of a probiotic infant formula on infections in child care centers: comparison of two probiotic agents,” Pediatrics, vol. 115, no. 1, pp. 5–9, 2005. View at Publisher · View at Google Scholar · View at Scopus
  35. D. D. G. Mater, L. Bretigny, O. Firmesse et al., “Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus survive gastrointestinal transit of healthy volunteers consuming yogurt,” FEMS Microbiology Letters, vol. 250, no. 2, pp. 185–187, 2005. View at Publisher · View at Google Scholar · View at Scopus
  36. C. N. Larsen, S. Nielsen, P. Kæstel et al., “Dose-response study of probiotic bacteria Bifidobacterium animalis subsp. lactis BB-12 and Lactobacillus paracasei subsp. paracasei CRL-341 in healthy young adults,” European Journal of Clinical Nutrition, vol. 60, no. 11, pp. 1284–1293, 2006. View at Publisher · View at Google Scholar · View at Scopus
  37. Y. E. M. Dommels, R. A. Kemperman, Y. E. M. P. Zebregs et al., “Survival of Lactobacillus reuteri DSM 17938 and Lactobacillus rhamnosus GG in the human gastrointestinal tract with daily consumption of a low-fat probiotic spread,” Applied and Environmental Microbiology, vol. 75, no. 19, pp. 6198–6204, 2009. View at Publisher · View at Google Scholar · View at Scopus
  38. J. Gossling and J. M. Slack, “Predominant gram-positive bacteria in human feces: numbers, variety, and persistence,” Infection and Immunity, vol. 9, no. 4, pp. 719–729, 1974. View at Scopus
  39. S. Atashpaz, S. Khani, A. Barzegari et al., “A robust universal method for extraction of genomic DNA from bacterial species,” Microbiology, vol. 79, no. 4, pp. 538–542, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. P. K. Sarkar and S. Banerjee, “Antibacterial activity of lactic acid bacterial isolates obtained from natural habitats,” Journal of Food Science and Technology, vol. 33, no. 3, pp. 231–233, 1996. View at Scopus
  41. R. Oliveira, “Understanding adhesion: a means for preventing fouling,” Experimental Thermal and Fluid Science, vol. 14, no. 4, pp. 316–322, 1997. View at Scopus
  42. M. Hermansson, “The DLVO theory in microbial adhesion,” Colloids and Surfaces B, vol. 14, no. 1–4, pp. 105–119, 1999. View at Publisher · View at Google Scholar · View at Scopus
  43. E. H. Beachey, “Bacterial adherence: adhesin-receptor interactions mediating the attachment of bacteria to mucosal surfaces,” Journal of Infectious Diseases, vol. 143, no. 3, pp. 325–345, 1981. View at Scopus
  44. H. M. Dalton and P. E. March, “Molecular genetics of bacterial attachment and biofouling,” Current Opinion in Biotechnology, vol. 9, no. 3, pp. 252–255, 1998. View at Publisher · View at Google Scholar · View at Scopus
  45. S. D. Knight, J. Berglund, and D. Choudhury, “Bacterial adhesins: structural studies reveal chaperone function and pilus biogenesis,” Current Opinion in Chemical Biology, vol. 4, no. 6, pp. 653–660, 2000. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Otto, H. Elwing, and M. Hermansson, “The role of type 1 fimbriae in adhesion of Escherichia coli to hydrophilic and hydrophobic surfaces,” Colloids and Surfaces B, vol. 15, no. 1, pp. 99–111, 1999. View at Publisher · View at Google Scholar · View at Scopus
  47. V. K. Viswanathan, A. Koutsouris, S. Lukic et al., “Comparative analysis of EspF from enteropathogenic and enterohemorrhagic Escherichia coli in alteration of epithelial barrier function,” Infection and Immunity, vol. 72, no. 6, pp. 3218–3227, 2004. View at Publisher · View at Google Scholar · View at Scopus
  48. E. M. Lehto and S. Salminen, “Adhesion of two Lactobacillus strains, one Lactococcus and one Propionibacterium strain to cultured human intestinal Caco-2 cell line,” Bioscience and Microflora, vol. 16, no. 1, pp. 13–17, 1997.
  49. H. Jensen, S. Grimmer, K. Naterstad, and L. Axelsson, “In vitro testing of commercial and potential probiotic lactic acid bacteria,” International Journal of Food Microbiology, vol. 153, no. 1-2, pp. 216–222, 2012. View at Publisher · View at Google Scholar · View at Scopus
  50. S. N. Gonzalez, R. Cardozo, M. C. Apella, and G. Oliver, “Biotherapeutic role of fermented milk,” Biotherapy, vol. 8, no. 2, pp. 129–134, 1994. View at Publisher · View at Google Scholar · View at Scopus
  51. E. J. Schiffrin, F. Rochat, H. Link-Amster, J. M. Aeschlimann, and A. Donnet-Hughes, “Immunomodulation of human blood cells following the ingestion of lactic acid bacteria,” Journal of Dairy Science, vol. 78, no. 3, pp. 491–497, 1995. View at Scopus
  52. Y. Fukushima, Y. Kawata, H. Hara, A. Terada, and T. Mitsuoka, “Effect of a probiotic formula on intestinal immunoglobulin A production in healthy children,” International Journal of Food Microbiology, vol. 42, no. 1-2, pp. 39–44, 1998. View at Publisher · View at Google Scholar · View at Scopus
  53. D. Gaon, C. Garmendia, N. O. Murrielo et al., “Effect of Lactobacillus strains (L. casei and L. acidophillus strains cerela) on bacterial overgrowth-related chronic diarrhea,” Medicina, vol. 62, no. 2, pp. 159–163, 2002. View at Scopus
  54. S. Blum and E. J. Schiffrin, “Intestinal microflora and homeostasis of the mucosal immune response: implications for probiotic bacteria?” Current Issues in Intestinal Microbiology, vol. 4, no. 2, pp. 53–60, 2003. View at Scopus
  55. A. L. Hart, K. Lammers, P. Brigidi et al., “Modulation of human dendritic cell phenotype and function by probiotic bacteria,” Gut, vol. 53, no. 11, pp. 1602–1609, 2004. View at Publisher · View at Google Scholar · View at Scopus
  56. M. de Vrese, A. Stegelmann, B. Richter, S. Fenselau, C. Laue, and J. Schrezenmeir, “Probiotics—compensation for lactase insufficiency,” The American Journal of Clinical Nutrition, vol. 73, no. 2, pp. 421S–429S, 2001. View at Scopus
  57. S. Messaoudi, G. Kergourlay, A. Rossero et al., “Identification of Lactobacilli residing in chicken ceca with antagonism against Campylobacter,” International Microbiology, vol. 14, no. 2, pp. 103–110, 2011. View at Publisher · View at Google Scholar · View at Scopus
  58. H. van Bokhorst-van de Veen, I. van Swam, M. Wels, P. A. Bron, and M. Kleerebezem, “Congruent strain specific intestinal persistence of Lactobacillus plantarum in an intestine-mimicking in vitro system and in human volunteers,” PLoS ONE, vol. 7, no. 9, Article ID e44588, 2012.
  59. R. Oozeer, A. Leplingard, D. D. G. Mater et al., “Survival of Lactobacillus casei in the human digestive tract after consumption of fermented milk,” Applied and Environmental Microbiology, vol. 72, no. 8, pp. 5615–5617, 2006. View at Publisher · View at Google Scholar · View at Scopus
  60. K. M. Tuohy, M. Pinart-Gilberga, M. Jones, L. Hoyles, A. L. McCartney, and G. R. Gibson, “Survivability of a probiotic Lactobacillus casei in the gastrointestinal tract of healthy human volunteers and its impact on the faecal microflora,” Journal of Applied Microbiology, vol. 102, no. 4, pp. 1026–1032, 2007. View at Publisher · View at Google Scholar · View at Scopus
  61. M. Mirlohi, S. Soleimanian-Zad, S. Dokhani, M. Sheikh-Zeinodin, and A. Abghary, “Investigation of acid and bile tolerance of native Lactobacilli isolated from fecal samples and commercial probiotics by growth and survival studies,” Iranian Journal of Biotechnology, vol. 7, no. 4, pp. 233–240, 2009. View at Scopus
  62. E. Both, E. Gyorgy, C. Z. Kibedi-szabo et al., “Acid and bile tolerance, adhesion to epithelial cells of probiotic microorganisms,” UPB Scientific Bulletin B, vol. 72, no. 2, pp. 1454–2331, 2010.
  63. K. Singhal, H. Joshi, and B. L. Chaudhary, “Bile and acid tolerance ability of probiotic Lactobacillus strains,” Journal of Global Pharma Technology, vol. 2, no. 12, pp. 17–25, 2010. View at Scopus
  64. R. P. K. Sahadeva, S. F. Leong, K. H. Chua et al., “Survival of commercial probiotic strains to pH and bile,” International Food Research Journal, vol. 18, no. 4, pp. 1515–1522, 2011. View at Scopus
  65. M. Saxelin, T. Pessi, and S. Salminen, “Fecal recovery following oral administration of Lactobacillus strain GG (ATCC 53103) in gelatine capsules to healthy volunteers,” International Journal of Food Microbiology, vol. 25, no. 2, pp. 199–203, 1995. View at Publisher · View at Google Scholar · View at Scopus
  66. B. R. Goldin, S. L. Gorbach, M. Saxelin, S. Barakat, L. Gualtieri, and S. Salminen, “Survival of Lactobacillus species (strain GG) in human gastrointestinal tract,” Digestive Diseases and Sciences, vol. 37, no. 1, pp. 121–128, 1992. View at Scopus
  67. R. M. Satokari, E. E. Vaughan, A. D. L. Akkermans, M. Saarela, and W. M. de Vos, “Polymerase chain reaction and denaturing gradient gel electrophoresis monitoring of fecal Bifidobacterium populations in a prebiotic and probiotic feeding trial,” Systematic and Applied Microbiology, vol. 24, no. 2, pp. 227–231, 2001. View at Scopus
  68. G. Önning, A. Berggren, M. Drevelius, B. Jeppsson, A. M. Lindberg, and M. L. Johansson Hagslätt, “Influence of a drink containing different antioxidants and Lactobacillus plantarum 299v on plasma total antioxidant capacity, selenium status and faecal microbial flora,” International Journal of Food Sciences and Nutrition, vol. 54, no. 4, pp. 281–289, 2003. View at Publisher · View at Google Scholar · View at Scopus
  69. F. Haschke, W. Wang, G. Ping et al., “Clinical trials prove the safety and efficacy of the probiotic strain Bifidobacterium Bb12 in follow-up formula and growing-up milks,” Monatsschrift fur Kinderheilkunde, vol. 146, no. 1, supplement, pp. S26–S30, 1998. View at Scopus
  70. S. Mathys, U. von Ah, C. Lacroix et al., “Detection of the pediocin gene pedA in strains from human faeces by real-time PCR and characterization of Pediococcus acidilactici UVA1,” BMC Biotechnology, vol. 7, article article 55, 2007. View at Publisher · View at Google Scholar · View at Scopus
  71. S. S. Choi, B. Y. Kang, M. J. Chung et al., “Safety assessment of potential lactic acid bacteria Bifidobacterium longum SPM1205 isolated from healthy Koreans,” Journal of Microbiology, vol. 43, no. 6, pp. 493–498, 2005. View at Scopus
  72. M. J. Hill, “Intestinal flora and endogenous vitamin synthesis,” European Journal of Cancer Prevention, vol. 6, no. 1, pp. S43–S45, 1997. View at Publisher · View at Google Scholar · View at Scopus
  73. K. E. Scholz-Ahrens, P. Ade, B. Marten et al., “Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure,” Journal of Nutrition, vol. 137, no. 3, pp. 838S–846S, 2007. View at Scopus