About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 584207, 9 pages
http://dx.doi.org/10.1155/2013/584207
Research Article

Streptomyces misionensis PESB-25 Produces a Thermoacidophilic Endoglucanase Using Sugarcane Bagasse and Corn Steep Liquor as the Sole Organic Substrates

1Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde (CCS), Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho 373, Bloco I, Laboratório 055, 21941-902 Rio de Janeiro, RJ, Brazil
2Departamento de Engenharia Bioquímica, Escola de Química, Centro de Tecnologia (CT), Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Bloco E, sala 203, 21941-909 Rio de Janeiro, RJ, Brazil
3Departamento de Bioquímica, Instituto de Química, Centro de Ciências Matemáticas e Natureza (CCMN), Universidade Federal do Rio de Janeiro (UFRJ), Avenida Athos da Silveira Ramos 149, Bloco A, sala 539, 21941-909 Rio de Janeiro, RJ, Brazil

Received 1 October 2012; Revised 8 January 2013; Accepted 4 February 2013

Academic Editor: Divya Prakash

Copyright © 2013 Marcella Novaes Franco-Cirigliano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. Kim, S. Yun, and Z. Ounaies, “Discovery of cellulose as a smart material,” Macromolecules, vol. 39, no. 12, pp. 4202–4206, 2006. View at Publisher · View at Google Scholar · View at Scopus
  2. P. Béguin and J. P. Aubert, “The biological degradation of cellulose,” FEMS Microbiology Reviews, vol. 13, no. 1, pp. 25–28, 1994. View at Publisher · View at Google Scholar
  3. J. Liu, W. D. Liu, X. L. Zhao, W. J. Shen, H. Cao, and Z. L. Cui, “Cloning and functional characterization of a novel endo-β-1,4- glucanase gene from a soil-derived metagenomic library,” Applied Microbiology and Biotechnology, vol. 89, no. 4, pp. 1083–1092, 2011. View at Publisher · View at Google Scholar · View at Scopus
  4. S. L. Liu and M. Xing, “Purification, properties and mass spectrometry analysis of two novel thermotolerant endoglucanases from Bacillus akibai I-2,” Advanced Materials Research, vol. 393–395, pp. 911–915, 2012.
  5. J. Lacey, “Actinomycetes in composts,” Annals of Agricultural and Environmental Medicine, vol. 4, pp. 113–121, 1997.
  6. C. S. Park, T. Kawaguchi, J. I. Sumitani, G. Takada, K. Izumori, and M. Arai, “Cloning and sequencing of an exoglucanase gene from Streptomyces sp. M23, and its expression in Streptomyces lividans TK-24,” Journal of Bioscience and Bioengineering, vol. 99, no. 4, pp. 434–436, 2005. View at Publisher · View at Google Scholar · View at Scopus
  7. F. Alani, W. A. Anderson, and M. Moo-Young, “New isolate of Streptomyces sp. with novel thermoalkalotolerant cellulases,” Biotechnology Letters, vol. 30, no. 1, pp. 123–126, 2008. View at Publisher · View at Google Scholar · View at Scopus
  8. R. P. Nascimento, N. A. Junior, N. Pereira, E. P. S. Bon, and R. R. R. Coelho, “Brewer's spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis,” Letters in Applied Microbiology, vol. 48, no. 5, pp. 529–535, 2009. View at Publisher · View at Google Scholar · View at Scopus
  9. F. N. M. Da Vinha, M. P. Gravina-Oliveira, M. N. Franco et al., “Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate,” Applied Biochemistry and Biotechnology, vol. 164, no. 3, pp. 256–267, 2011. View at Publisher · View at Google Scholar · View at Scopus
  10. A. L. Grigorevski-Lima, R. P. Nascimento, E. P. S. Bon, and R. R. R. Coelho, “Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries,” Enzyme and Microbial Technology, vol. 37, no. 2, pp. 272–277, 2005. View at Publisher · View at Google Scholar · View at Scopus
  11. A. Sazci, A. Radford, and K. Erenler, “Detection of cellulolytic fungi by using Congo red as an indicator: a comparative study with the dinitrosalicyclic acid reagent method,” Journal of Applied Bacteriology, vol. 61, no. 6, pp. 559–562, 1986. View at Scopus
  12. D. A. Hopwood, M. J. Bibb, K. F. Chater et al., Genetic Manipulation of Streptomyces: A Laboratory Manual, The John Innes Institute, Norwich, UK, 1985.
  13. E. B. Shirling and D. Gottlieb, “Methods for characterization of Streptomyces species,” International Journal of Systematic Bacteriology, vol. 16, no. 3, pp. 313–340, 1966. View at Publisher · View at Google Scholar
  14. C. P. Kurtzman and C. J. Robnett, “Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences,” Antonie van Leeuwenhoek, vol. 73, no. 4, pp. 331–371, 1998. View at Publisher · View at Google Scholar · View at Scopus
  15. H. Hayashi, M. Sakamoto, and Y. Benno, “Evaluation of three different forward primers by terminal restriction fragment length polymorphism analysis for determination of fecal Bifidobacterium spp. in healthy subjects,” Microbiology and Immunology, vol. 48, no. 1, pp. 1–6, 2004. View at Scopus
  16. F. E. Löffler, Q. Sun, J. Li, and J. M. Tiedje, “16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species,” Applied and Environmental Microbiology, vol. 66, no. 4, pp. 1369–1374, 2000. View at Publisher · View at Google Scholar · View at Scopus
  17. J. R. Cole, Q. Wang, E. Cardenas et al., “The ribosomal database project: improved alignments and new tools for rRNA analysis,” Nucleic Acids Research, vol. 37, no. 1, pp. D141–D145, 2009. View at Publisher · View at Google Scholar · View at Scopus
  18. D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, and D. L. Wheeler, “GenBank,” Nucleic Acids Research, vol. 36, no. 1, pp. D25–D30, 2008. View at Publisher · View at Google Scholar · View at Scopus
  19. M. Johnson, I. Zaretskaya, Y. Raytselis, Y. Merezhuk, S. McGinnis, and T. L. Madden, “NCBI BLAST: a better web interface,” Nucleic Acids Research, vol. 36, pp. W5–W9, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. G. J. M. Rocha, F. T. Silva, G. T. Araújo, and A. A. S. Curvelo, “A fast and accurate method for determination of cellulose and polyoses by HPLC,” in Proceedings of the 5th Brazilian symposium on chemistry of lignins and other wood components, vol. 6, pp. 3–8, Curitiba, Brazil, 1997.
  21. L. E. R. Paula, P. F. Trugilho, A. Napoli, and M. L. Bianchi, “Characterization of residues from plant biomass for use in energy generation,” CERNE, vol. 17, no. 2, pp. 237–246, 2011. View at Scopus
  22. The Corn Refiners Association, “Assessment plan for corn steep liquor (CAS no. 66071-94-1) in accordance with the USEPA high production,” volume chemical challenge program prepared for November 2006.
  23. J. D. Breccia, G. R. Castro, M. D. Baigori, and F. Sineriz, “Screening of xytanolytic bacteria using a colour plate method,” Journal of Applied Bacteriology, vol. 78, no. 5, pp. 469–472, 1995. View at Scopus
  24. L. Miller, “Use of dinitrosalicyllc acid reagent for determination of reducing sugars,” Analytical Chemistry, vol. 31, pp. 426–428, 1959. View at Publisher · View at Google Scholar
  25. T. K. Ghose, “Measurement of cellulase activities,” Pure and Applied Chemistry, vol. 59, no. 2, pp. 257–268, 1987. View at Publisher · View at Google Scholar
  26. G. Gomori, “General preparative procedures,” in Methods in Enzymology, vol. 1, pp. 138–146, Academic Press, New York, NY, USA, 1955. View at Publisher · View at Google Scholar
  27. T. César and V. Mrsa, “Purification and properties of the xylanase produced by Thermomyces lanuginosus,” in Enzyme and Microbial Technology, vol. 19, pp. 289–296, 1996. View at Publisher · View at Google Scholar
  28. A. P. Cercos, B. L. Eilberg, J. G. Goyena, J. Souto, E. E. Vautier, and I. Widuczynski, “Misionina: antibiotico polienico producido por Streptomyces misionensis n. sp,” Revista de Investigaciones Agricolas, vol. 17, pp. 5–27, 1962.
  29. G. Garau, P. Castaldi, L. Santona, P. Deiana, and P. Melis, “Influence of red mud, zeolite and lime on heavy metal immobilization, culturable heterotrophic microbial populations and enzyme activities in a contaminated soil,” Geoderma, vol. 142, no. 1-2, pp. 47–57, 2007. View at Publisher · View at Google Scholar · View at Scopus
  30. R. F. Seipke, J. Barke, M. X. Ruiz-Gonzalez, J. Orivel, D. W. Yu, and M. I. Hutchings, “Fungus-growing Allomerus ants are associated with antibiotic-producing actinobacteria,” Antonie van Leeuwenhoek, pp. 1–5, 2011. View at Publisher · View at Google Scholar · View at Scopus
  31. A. L. Grigorevski-Lima, F. N. M. Da Vinha, D. T. Souza et al., “Aspergillus fumigatus thermophilic and acidophilic endoglucanases,” Applied Biochemistry and Biotechnology, vol. 155, no. 1–3, pp. 321–329, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. Z. Jaradat, A. Dawagreh, Q. Ababneh, and S. Ismail, “Influence of culture conditions on cellulase production by Streptomyces sp. (strain J2),” Jordan Journal of Biological Science, vol. 1, no. 4, pp. 141–146, 2008.
  33. H. D. Jang and K. S. Chen, “Production and characterization of thermostable cellulases from Streptomyces transformant T3-1,” World Journal of Microbiology and Biotechnology, vol. 19, no. 3, pp. 263–268, 2003. View at Publisher · View at Google Scholar · View at Scopus
  34. S. N. Chinedu, C. O. Nwinyi, and V. I. Okochi, “Properties of endoglucanase of Penicillium chrysogemum PCL501,” Australian Journal of Basic and Applied Science, vol. 2, pp. 738–746, 2008.
  35. S. K. Soni, N. Batra, N. Bansal, and R. Soni, “Bioconversion of sugarcane bagasse into second generation bioethanol after enzymatic hydrolysis with in-house produced cellulases from Aspergillus sp. S4B2F,” BioResources, vol. 5, no. 2, pp. 741–757, 2010. View at Scopus
  36. S. Chauvaux, H. Souchon, P. M. Alzari, P. Chariot, and P. Beguin, “Structural and functional analysis of the metal-binding sites of Clostridium thermocellum endoglucanase CelD,” Journal of Biological Chemistry, vol. 270, no. 17, pp. 9757–9762, 1995. View at Publisher · View at Google Scholar · View at Scopus
  37. C. R. Santos, J. H. Paiva, M. L. Sforça et al., “Dissecting structure-function-stability relationships of a thermostable GH5-CBM3 cellulase from Bacillus subtilis 168,” Biochemistry Journal, vol. 441, no. 1, pp. 95–104, 2012.
  38. J. Gao, H. Weng, Y. Xi, D. Zhu, and S. Han, “Purification and characterization of a novel endo-β-1,4-glucanase from the thermoacidophilic Aspergillus terreus,” Biotechnology Letters, vol. 30, no. 2, pp. 323–327, 2008. View at Publisher · View at Google Scholar · View at Scopus
  39. Y.-M. Tao, X.-Z. Zhu, J.-Z. Huang et al., “Purification and properties of endoglucanase from a sugar cane bagasse hydrolyzing strain, Aspergillus glaucus XC9,” Journal of Agricultural and Food Chemistry, vol. 58, no. 10, pp. 6126–6130, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. B. Godden, T. Legon, P. Helvenstein, and M. Penninckx, “Regulation of the production of hemicellulolytic and cellulolytic enzymes by a Streptomyces sp. growing on lignocellulose,” Journal of General Microbiology, vol. 135, no. 2, pp. 285–292, 1989. View at Scopus
  41. M. Tuncer, A. Kuru, M. Isikli, N. Sahin, and F. G. Çelenk, “Optimization of extracellular endoxylanase, endoglucanase and peroxidase production by Streptomyces sp. F2621 isolated in Turkey,” Journal of Applied Microbiology, vol. 97, no. 4, pp. 783–791, 2004. View at Publisher · View at Google Scholar · View at Scopus
  42. M. W. Pantoliano, M. Whitlow, J. F. Wood et al., “The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case,” Biochemistry, vol. 27, no. 22, pp. 8311–8317, 1988. View at Scopus
  43. A. Tanaka and E. Hoshino, “Calcium-binding parameter of Bacillus amyloliquefaciens α-amylase determined by inactivation kinetics,” Biochemical Journal, vol. 364, no. 3, pp. 635–639, 2002. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Dutta, R. Sahoo, R. Sengupta, S. S. Ray, A. Bhattacharjee, and S. Ghosh, “Novel cellulases from an extremophilic filamentous fungi Penicillium citrinum: production and characterization,” Journal of Industrial Microbiology & Biotechnology, vol. 35, no. 4, pp. 275–282, 2008. View at Publisher · View at Google Scholar · View at Scopus