About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 587451, 10 pages
http://dx.doi.org/10.1155/2013/587451
Research Article

A pH-Sensitive, Biobased Calcium Carbonate Aragonite Nanocrystal as a Novel Anticancer Delivery System

1Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Malaysia
2Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia

Received 12 July 2013; Revised 13 September 2013; Accepted 3 October 2013

Academic Editor: Sanyog Jain

Copyright © 2013 Abdullahi Shafiu Kamba et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. E. Thurston Devid, Chemistry and Pharmacology of Anticancer Drugs, Taylor & Francis, 2007.
  2. G. R. Mundy, “Metastasis to bone: causes, consequences and therapeutic opportunities,” Nature Reviews Cancer, vol. 2, pp. 584–593, 2002.
  3. J. Iddon, G. Byrne, and N. J. Bundred, “Bone metastasis in breast cancer: the role of parathyroid hormone related protein,” Surgical Oncology, vol. 8, no. 1, pp. 13–25, 1999. View at Publisher · View at Google Scholar · View at Scopus
  4. G. N. Hortobagyi, “Novel approaches to the management of bone metastases in patients with breast cancer,” Seminars in Oncology, vol. 29, no. 3, pp. 134–144, 2002. View at Scopus
  5. J. E. Brown and R. E. Coleman, “The present and future role of bisphosphonates in the management of patients with breast cancer,” Breast Cancer Research, vol. 4, no. 1, pp. 24–29, 2002. View at Publisher · View at Google Scholar · View at Scopus
  6. T. Bäuerle, M. Merz, D. Komljenovic, S. Zwick, and W. Semmler, “Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study,” Clinical Cancer Research, vol. 16, no. 12, pp. 3215–3225, 2010. View at Publisher · View at Google Scholar · View at Scopus
  7. M. N. Thobe, R. J. Clark, R. O. Bainer, S. M. Prasad, and C. W. Rinker-Schaeffer, “From prostate to bone: key players in prostate cancer bone metastasis,” Cancers, vol. 3, no. 1, pp. 478–493, 2011. View at Publisher · View at Google Scholar · View at Scopus
  8. J. El Hazzat and M. E. H. El-sayed, “Advances in targeted breast cancer therapy,” Current Breast Cancer Reports, vol. 2, no. 3, pp. 146–151, 2010. View at Publisher · View at Google Scholar
  9. K. Cho, X. Wang, S. Nie, Z. Chen, and D. M. Shin, “Therapeutic nanoparticles for drug delivery in cancer,” Clinical Cancer Research, vol. 14, no. 5, pp. 1310–1316, 2008. View at Publisher · View at Google Scholar · View at Scopus
  10. H. Sharif, H. Yamamoto, E. H. Chowdhury et al., “Fabrication and intracellular delivery of doxorubicin/ carbonate apatite nanocomposites: effect on growth retardation of established colon tumor,” PLoS ONE, vol. 8, no. 4, Article ID e60428, 2013.
  11. P. Rameshwar, J. Portilla-Arias, H. Ding et al., “Cellular delivery of doxorubicin via pH-controlled hydrazone linkage using multifunctional nano vehicle based on poly(βL-malic acid),” International Journal of Molecular Sciences, vol. 13, pp. 11681–11693, 2012.
  12. A. J. Awang-Hazmi, A. B. Z. Zuki, M. M. Nordin, A. Jalila, and Y. Norimah, “Mineral composition of the cockle (Anadara granosa) shells of west coast of peninsular Malaysia and its potential as biomaterial for use in bone repair,” Journal of Animal and Veterinary Advances, vol. 6, no. 5, pp. 591–594, 2007.
  13. A. S. Kamba, M. Ismail, T. A. T. Ibrahim, and Z. A. B. Zakaria, “Synthesis and characterisation of calcium carbonate aragonite nanocrystals from cockle shell powder (Anadara granosa),” Journal of Nanomaterials, vol. 2013, Article ID 398357, 9 pages, 2013. View at Publisher · View at Google Scholar
  14. S. Barua, J.-W. Yoo, P. Kolhar, A. Wakankar, Y. R. Gokarn, and S. Mitragotri, “Particle shape enhances specificity of antibody-displaying nanoparticles,” Proceeding of the National Academy of Sciences of the United State of America, vol. 110, no. 9, pp. 3270–3275, 2013. View at Publisher · View at Google Scholar
  15. S.-B. Wang, A.-Z. Chen, L.-J. Weng, M.-Y. Chen, and X.-L. Xie, “Effect of drug-loading methods on drug load, encapsulation efficiency and release properties of alginate/poly-L-arginine/chitosan ternary complex microcapsules,” Macromolecular Bioscience, vol. 4, no. 1, pp. 27–30, 2004. View at Publisher · View at Google Scholar · View at Scopus
  16. Q. Zhao, B. Han, Z. Wang, C. Gao, C. Peng, and J. Shen, “Hollow chitosan-alginate multilayer microcapsules as drug delivery vehicle: doxorubicin loading and in vitro and in vivo studies,” Nanomedicine, vol. 3, no. 1, pp. 63–74, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. Z. Dong, C.-J. Liu, R.-X. Zhuo, and S.-X. Cheng, “Alginate/CaCO3 hybrid nanoparticles for effcient co delivery of antitumor gene and drug,” Molecular Pharmaceutics, vol. 9, pp. 2887–2893, 2012.
  18. K. K. Upadhyay, A. N. Bhatt, A. K. Mishra et al., “The intracellular drug delivery and anti tumor activity of doxorubicin loaded poly(γ-benzyl l-glutamate)-b-hyaluronan polymersomes,” Biomaterials, vol. 31, no. 10, pp. 2882–2892, 2010. View at Publisher · View at Google Scholar · View at Scopus
  19. G. Detlev and R. Klaus, “Endosomal compartment,” in Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine, G. Detlev and R. Klaus, Eds., Springer, Berlin, Germany, 2013, http://www.springerreference.com, http://www.springerreference.com/docs/html/chapterdbid/35056.html.