About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 589048, 9 pages
http://dx.doi.org/10.1155/2013/589048
Research Article

Different Mechanisms of Inflammation Induced in Virus and Autoimmune-Mediated Models of Multiple Sclerosis in C57BL6 Mice

1Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, Nadia West Bengal 741252, India
2IISER Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali 140306, India
3Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
4Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia PA 19107, USA
5University of Pennsylvania, Scheie Eye Institute and F.M. Kirby Center for Molecular Ophthalmology, Philadelphia, PA 19104, USA

Received 7 April 2013; Accepted 1 July 2013

Academic Editor: Arianna Scuteri

Copyright © 2013 Abhinoy Kishore et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. J. H. Noseworthy, C. Lucchinetti, M. Rodriguez, and B. G. Weinshenker, “Multiple sclerosis,” The New England Journal of Medicine, vol. 343, no. 13, pp. 938–952, 2000. View at Publisher · View at Google Scholar · View at Scopus
  2. R. Martin, H. F. McFarland, and D. E. McFarlin, “Immunological aspects of demyelinating diseases,” Annual Review of Immunology, vol. 10, pp. 153–187, 1992. View at Scopus
  3. M. Sospedra and R. Martin, “Immunology of multiple sclerosis,” Annual Review of Immunology, vol. 23, pp. 683–747, 2005. View at Publisher · View at Google Scholar · View at Scopus
  4. S. Sawcer, H. B. Jones, R. Feakes et al., “A genome screen in multiple sclerosis reveals susceptibility loci on chromosome 6p21 and 17q22,” Nature Genetics, vol. 13, no. 4, pp. 464–468, 1996. View at Publisher · View at Google Scholar · View at Scopus
  5. G. C. Ebers, “Genetic epidemiology of multiple sclerosis,” Current Opinion in Neurology, vol. 9, no. 3, pp. 155–158, 1996. View at Scopus
  6. G. C. Ebers, K. Kukay, D. E. Bulman et al., “A full genome search in multiple sclerosis,” Nature Genetics, vol. 13, no. 4, pp. 472–476, 1996. View at Publisher · View at Google Scholar · View at Scopus
  7. J. L. Haines, M. Ter-Minassian, A. Bazyk et al., “A complete genomic screen for multiple sclerosis underscores a role for the major histocompatibility complex,” Nature Genetics, vol. 13, no. 4, pp. 469–471, 1996. View at Publisher · View at Google Scholar · View at Scopus
  8. Q. Ji, A. Perchellet, and J. M. Goverman, “Viral infection triggers central nervous system autoimmunity via activation of CD8+ T cells expressing dual TCRs,” Nature Immunology, vol. 11, no. 7, pp. 628–634, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. E. S. Huseby, D. Liggitt, T. Brabb, B. Schnabel, C. Öhlén, and J. Goverman, “A pathogenic role for myelin-specific CD8+ T cells in a model for multiple sclerosis,” Journal of Experimental Medicine, vol. 194, no. 5, pp. 669–676, 2001. View at Publisher · View at Google Scholar · View at Scopus
  10. T. Tsuchida, K. C. Parker, R. V. Turner, H. F. McFarland, J. E. Coligan, and W. E. Biddison, “Autoreactive CD8+ T-cell responses to human myelin protein-derived peptides,” Proceedings of the National Academy of Sciences of the United States of America, vol. 91, no. 23, pp. 10859–10863, 1994. View at Publisher · View at Google Scholar · View at Scopus
  11. D. H. Gilden, “Infectious causes of multiple sclerosis,” Lancet Neurology, vol. 4, no. 3, pp. 195–202, 2005. View at Publisher · View at Google Scholar · View at Scopus
  12. S. D. Cook and P. C. Dowling, “Multiple sclerosis and viruses: an overview,” Neurology, vol. 30, no. 7, part 2, pp. 80–91, 1980. View at Scopus
  13. J. F. Kurtzke, “Epidemiologic evidence for multiple sclerosis as an infection,” Clinical Microbiology Reviews, vol. 6, no. 4, pp. 382–427, 1993. View at Scopus
  14. C. Cermelli and S. Jacobson, “Viruses and multiple sclerosis,” Viral Immunology, vol. 13, no. 3, pp. 255–267, 2000. View at Scopus
  15. S. Kuerten, T. L. Gruppe, L.-M. Laurentius et al., “Differential patterns of spinal cord pathology induced by MP4, MOG peptide 35–55, and PLP peptide 178–191 in C57BL/6 mice,” APMIS, vol. 119, no. 6, pp. 336–346, 2011. View at Publisher · View at Google Scholar · View at Scopus
  16. M. C. Dal Canto, B. S. Kim, S. D. Miller, and R. W. Melvold, “Theiler's murine encephalomyelitis virus (TMEV)-induced demyelination: a model for human multiple sclerosis,” Methods, vol. 10, no. 3, pp. 453–461, 1996. View at Publisher · View at Google Scholar · View at Scopus
  17. E. L. Oleszak, J. R. Chang, H. Friedman, C. D. Katsetos, and C. D. Platsoucas, “Theiler's virus infection: a model for multiple sclerosis,” Clinical Microbiology Reviews, vol. 17, no. 1, pp. 174–207, 2004. View at Publisher · View at Google Scholar · View at Scopus
  18. J. J. Houtman and J. O. Fleming, “Pathogenesis of mouse hepatitis virus-induced demyelination,” Journal of NeuroVirology, vol. 2, no. 6, pp. 361–376, 1996. View at Scopus
  19. E. Lavi, D. H. Gilden, and Z. Wroblewska, “Experimental demyelination produced by the A59 strain of mouse hepatitis virus,” Neurology, vol. 34, no. 5, pp. 597–603, 1984. View at Scopus
  20. S. A. Stohlman and L. P. Weiner, “Chronic central nervous system demyelination in mice after JHM virus infection,” Neurology, vol. 31, no. 1, pp. 38–44, 1981. View at Scopus
  21. L. P. Weiner, “Pathogenesis of demyelination induced by a mouse hepatitis,” Archives of Neurology, vol. 28, no. 5, pp. 298–303, 1973. View at Scopus
  22. E. Lavi, D. H. Gilden, M. K. Highkin, and S. R. Weiss, “Persistence of mouse hepatitis virus A59 RNA in a slow virus demyelinating infection in mice as detected by in situ hybridization,” Journal of Virology, vol. 51, no. 2, pp. 563–566, 1984. View at Scopus
  23. S. Perlman, G. Jacobson, A. L. Olson, and A. Afifi, “Identification of the spinal cord as a major site of persistence during chronic infection with a murine coronavirus,” Virology, vol. 175, no. 2, pp. 418–426, 1990. View at Publisher · View at Google Scholar · View at Scopus
  24. J. L. Gombold and S. R. Weiss, “Mouse Hepatitis Virus A59 increases steady-state levels of MHC mRNAs in primary glial cell cultures and in the murine Central Nervous System,” Microbial Pathogenesis, vol. 13, no. 6, pp. 493–505, 1992. View at Publisher · View at Google Scholar · View at Scopus
  25. E. Lavi, A. Suzumura, L. A. Lampson et al., “Expression of MHC class I genes in mouse hepatitis virus (MHV-A59) infection and in multiple sclerosis,” Advances in Experimental Medicine and Biology, vol. 218, pp. 219–222, 1987. View at Scopus
  26. E. Lavi, A. Suzumura, E. M. Murray, D. H. Silberberg, and S. R. Weiss, “Induction of MHC class I antigens on glial cells is dependent on persistent mouse hepatitis virus infection,” Journal of Neuroimmunology, vol. 22, no. 2, pp. 107–111, 1989. View at Publisher · View at Google Scholar · View at Scopus
  27. A. Suzumura, E. Lavi, S. R. Weiss, and D. H. Silberberg, “Coronavirus infection induces H-2 antigen expression on oligodendrocytes and astrocytes,” Science, vol. 232, no. 4753, pp. 991–993, 1986. View at Scopus
  28. A. Suzumura, E. Lavi, S. Bhat, D. Murasko, S. R. Weiss, and D. H. Silberberg, “Induction of glial cell MHC antigen expression in neurotropic coronavirus infections. Characterization of the H-2-inducing soluble factor elaborated by infected brain cells,” Journal of Immunology, vol. 140, no. 6, pp. 2068–2072, 1988. View at Scopus
  29. A. E. Matthews, E. Lavi, S. R. Weiss, and Y. Paterson, “Neither B cells nor T cells are required for CNS demyelination in mice persistently infected with MHV-A59,” Journal of NeuroVirology, vol. 8, no. 3, pp. 257–264, 2002. View at Publisher · View at Google Scholar · View at Scopus
  30. R. M. Sutherland, M.-M. Chua, E. Lavi, S. R. Weiss, and Y. Paterson, “CD4+ and CD8+ T cells are not major effectors of mouse hepatitis virus A59-induced demyelinating disease,” Journal of NeuroVirology, vol. 3, no. 3, pp. 225–228, 1997. View at Scopus
  31. J. Das Sarma, L. C. Kenyon, S. T. Hingley, and K. S. Shindler, “Mechanisms of primary axonal damage in a viral model of multiple sclerosis,” Journal of Neuroscience, vol. 29, no. 33, pp. 10272–10280, 2009. View at Publisher · View at Google Scholar · View at Scopus
  32. J. Das Sarma, B. Ciric, R. Marek et al., “Functional interleukin-17 receptor A is expressed in central nervous system glia and upregulated in experimental autoimmune encephalomyelitis,” Journal of Neuroinflammation, vol. 6, article 14, 2009. View at Publisher · View at Google Scholar · View at Scopus
  33. D. C. Fitzgerald, B. Ciric, T. Touil et al., “Suppressive effect of IL-27 on encephalitogenic Th17 cells and the effector phase of experimental autoimmune encephalomyelitis,” Journal of Immunology, vol. 179, no. 5, pp. 3268–3275, 2007. View at Scopus
  34. J. Das Sarma, K. Iacono, L. Gard et al., “Demyelinating and nondemyelinating strains of mouse hepatitis virus differ in their neural cell tropism,” Journal of Virology, vol. 82, no. 11, pp. 5519–5526, 2008. View at Publisher · View at Google Scholar · View at Scopus
  35. K. S. Shindler, L. C. Kenyon, M. Dutt, S. T. Hingley, and J. Das Sarma, “Experimental optic neuritis induced by a demyelinating strain of mouse hepatitis virus,” Journal of Virology, vol. 82, no. 17, pp. 8882–8886, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. J. Das Sarma, E. Scheen, S.-H. Seo, M. Koval, and S. R. Weiss, “Enhanced green fluorescent protein expression may be used to monitor murine coronavirus spread in vitro and in the mouse central nervous system,” Journal of NeuroVirology, vol. 8, no. 5, pp. 381–391, 2002. View at Publisher · View at Google Scholar · View at Scopus
  37. L. J. Reed and H. Muench, “A simple method of estimating fifty per cent endpoints,” American Journal of Epidemiology, vol. 27, no. 3, pp. 493–497, 1938. View at Scopus
  38. J. D. Sarma, L. Fu, S. T. Hingley, and E. Lavi, “Mouse hepatitis virus type-2 infection in mice: an experimental model system of acute meningitis and hepatitis,” Experimental and Molecular Pathology, vol. 71, no. 1, pp. 1–12, 2001. View at Publisher · View at Google Scholar · View at Scopus
  39. J. Das Sarma, L. Fu, J. C. Tsai, S. R. Weiss, and E. Lavi, “Demyelination determinants map to the spike glycoprotein gene of coronavirus mouse hepatitis virus,” Journal of Virology, vol. 74, no. 19, pp. 9206–9213, 2000. View at Publisher · View at Google Scholar · View at Scopus
  40. J. J. Phillips, M. M. Chua, G. F. Rall, and S. R. Weiss, “Murine coronavirus spike glycoprotein mediates degree of viral spread, inflammation, and virus-induced immunopathology in the central nervous system,” Virology, vol. 301, no. 1, pp. 109–120, 2002. View at Publisher · View at Google Scholar · View at Scopus
  41. S. Navas, S.-H. Seo, M. M. Chua et al., “Murine coronavirus spike protein determines the ability of the virus to replicate in the liver and cause hepatitis,” Journal of Virology, vol. 75, no. 5, pp. 2452–2457, 2001. View at Publisher · View at Google Scholar · View at Scopus