About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 590306, 10 pages
http://dx.doi.org/10.1155/2013/590306
Research Article

Risk Assessment of Heavy Metals Pollution in Agricultural Soils of Siling Reservoir Watershed in Zhejiang Province, China

1Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
2Center for Biomedicine and Health, Hangzhou Normal University, Hangzhou 311121, China

Received 10 July 2013; Accepted 10 August 2013

Academic Editor: Qaisar Mahmood

Copyright © 2013 Naveedullah et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. A. Kabata-Pendias and H. Pendias, Trace Elements in Soils and Plants, CRC Press, New York, NY, USA, 2001.
  2. W. O. Ernst, The Origin and Ecology of Contaminated, Stabilized and Non-Pristine Soils, Metal-Contaminated Soil, Springer, New York, NY, USA, 1998.
  3. V. Iñigo, M. Andrades, J. Alonso-Martirena, A. Marín, and R. Jiménez-Ballesta, “Spatial variability of cadmium and lead in natural soils of a humid Mediterranean environment: La Rioja, Spain,” Archives of Environmental Contamination and Toxicology, vol. 64, no. 4, pp. 594–604, 2013. View at Publisher · View at Google Scholar
  4. M. Oves, M. S. Khan, A. Zaidi, and E. Ahmad, “Soil contamination, nutritive value, and human health risk assessment of heavy metals: an overview,” in Toxicity of Heavy Metals to Legumes and Bioremediation, pp. 1–27, Springer, New York, NY, USA, 2012.
  5. S. S. Huang, Q. L. Liao, M. Hua et al., “Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China,” Chemosphere, vol. 67, no. 11, pp. 2148–2155, 2007. View at Publisher · View at Google Scholar · View at Scopus
  6. Y. M. N'guessan, J. L. Probst, T. Bur, and A. Probst, “Trace elements in stream bed sediments from agricultural catchments (Gascogne region, S-W France): where do they come from?” Science of the Total Environment, vol. 407, no. 8, pp. 2939–2952, 2009. View at Publisher · View at Google Scholar · View at Scopus
  7. S. C. Wong, X. D. Li, G. Zhang, S. H. G. Qi, and Y. S. Min, “Heavy metals in agricultural soils of the Pearl River Delta, South China,” Environmental Pollution, vol. 119, no. 1, pp. 33–44, 2002. View at Publisher · View at Google Scholar · View at Scopus
  8. S. Cheng, “Heavy metal pollution in China: origin, pattern and control,” Environmental Science and Pollution Research, vol. 10, no. 3, pp. 192–198, 2003. View at Scopus
  9. Y. Ouyang, J. Higman, J. Thompson, T. O'Toole, and D. Campbell, “Characterization and spatial distribution of heavy metals in sediment from Cedar and Ortega rivers subbasin,” Journal of Contaminant Hydrology, vol. 54, no. 1-2, pp. 19–35, 2002. View at Publisher · View at Google Scholar · View at Scopus
  10. L. Järup, “Hazards of heavy metal contamination,” The British Medical Bulletin, vol. 68, pp. 167–182, 2003. View at Publisher · View at Google Scholar · View at Scopus
  11. C. Knight, J. Kaiser, G. C. Lalor, H. Robotham, and J. V. Witter, “Heavy metals in surface water and stream sediments in Jamaica,” Environmental Geochemistry and Health, vol. 19, no. 2, pp. 63–66, 1997. View at Scopus
  12. R. P. Gambrell, “Trace and toxic metals in wetlands—a review,” Journal of Environmental Quality, vol. 23, no. 5, pp. 883–891, 1994. View at Scopus
  13. J. Iqbal and M. H. Shah, “Distribution, correlation and risk assessment of selected metals in urban soils from Islamabad, Pakistan,” Journal of Hazardous Materials, vol. 192, no. 2, pp. 887–898, 2011. View at Publisher · View at Google Scholar · View at Scopus
  14. M. L. Bloemen, B. Markert, and H. Lieth, “The distribution of Cd, Cu, Pb and Zn in topsoils of Osnabruck in relation to land use,” Science of the Total Environment, vol. 166, pp. 137–148, 1995. View at Publisher · View at Google Scholar · View at Scopus
  15. Y. M. Zheng, T. B. Chen, and G. D. Zheng, “Chromium and nickel accumulations in soils under different land use,” Resources Science, vol. 27, pp. 162–166, 2005 (Chinese).
  16. Y. M. Zheng, T. B. Chen, H. Chen, G. Zheng, and J. Luo, “Lead accumulation in soils under different land use types in Beijing City,” Acta Geographica Sinica, vol. 60, no. 5, pp. 791–797, 2005. View at Scopus
  17. Y. M. Zheng, J. F. Luo, and T. B. Chen, “Cadmium accumulation in soils under differential land use in Beijing,” Geographical Research, vol. 24, p. 542, 2005 (Chinese).
  18. Y. M. Zheng, T. B. Chen, and G. D. Zheng, “Copper accumulation in soils under differential land use in Beijing,” Journal of Natural Resources, vol. 20, pp. 690–696, 2005 (Chinese).
  19. S. K. Gaw, A. L. Wilkins, N. D. Kim, G. T. Palmer, and P. Robinson, “Trace element and ΣDDT concentrations in horticultural soils from the Tasman, Waikato and Auckland regions of New Zealand,” Science of the Total Environment, vol. 355, no. 1–3, pp. 31–47, 2006. View at Publisher · View at Google Scholar · View at Scopus
  20. M. Radojevic and V. N. Bashlin, Practical Environmental Analysis, The Royal Society of Chemistry, London, UK, 1999.
  21. US, EPA, Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils, Method 3051A, Office of Solid Waste and Emergency Response, U.S. Government Printing Office, Washington, DC, USA, 2007.
  22. A. Tessier, P. G. C. Campbell, and M. Blsson, “Sequential extraction procedure for the speciation of particulate trace metals,” Analytical Chemistry, vol. 51, no. 7, pp. 844–851, 1979. View at Scopus
  23. S. R. Tariq, M. H. Shah, and N. Shaheen, “Comparative statistical analysis of chrome and vegetable tanning effluents and their effects on related soil,” Journal of Hazardous Materials, vol. 169, no. 1–3, pp. 285–290, 2009. View at Publisher · View at Google Scholar · View at Scopus
  24. S. Allen, H. M. Grimshaw, J. A. Parkinson, and C. Quarmby, Chemical Analysis of Ecological Materials, Blackwell, Oxford, UK, 1974.
  25. N. ISO, 10390 Soil Quality, Determination of PH, International Organization for Standardization, Geneve, Switzerland, 2005.
  26. S. Bao, Soil and Agricultural Chemistry Analysis, Agriculture Publication, Beijing, China, 2000.
  27. W. Wu, D. T. Xie, and H. B. Liu, “Spatial variability of soil heavy metals in the three gorges area: multivariate and geostatistical analyses,” Environmental Monitoring and Assessment, vol. 157, no. 1–4, pp. 63–71, 2009. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Z. Hashmi, M. R. Naseem, and S. Muhammad, “Heavy metals in eggshells of cattle egret (Bubulcus ibis) and little egret (Egretta garzetta) from the Punjab province, Pakistan,” Ecotoxicology and Environmental Safety, vol. 89, pp. 158–165, 2013. View at Publisher · View at Google Scholar
  29. C. Reimann and P. de Caritat, “Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors,” Science of the Total Environment, vol. 337, no. 1–3, pp. 91–107, 2005. View at Publisher · View at Google Scholar · View at Scopus
  30. F. A. Vega, E. F. Covelo, B. Cerqueira, and M. L. Andrade, “Enrichment of marsh soils with heavy metals by effect of anthropic pollution,” Journal of Hazardous Materials, vol. 170, no. 2-3, pp. 1056–1063, 2009. View at Publisher · View at Google Scholar · View at Scopus
  31. S. R. Taylor and S. M. McLennan, “The geochemical evolution of the continental crust,” Reviews of Geophysics, vol. 33, no. 2, pp. 241–265, 1995. View at Scopus
  32. G. Muller, “Index of geoaccumulation in sediments of the Rhine River,” Journal of Geology, vol. 2, pp. 108–118, 1969.
  33. K. Loska, D. Wiechulła, and I. Korus, “Metal contamination of farming soils affected by industry,” Environment International, vol. 30, no. 2, pp. 159–165, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. K. K. Turekian and K. H. Wedepohl, “Distribution of the elements in some major units of the earth's crust,” Geological Society of America Bulletin, vol. 72, no. 2, pp. 175–192, 1961. View at Publisher · View at Google Scholar
  35. D. R. Lide, CRC Handbook of Chemistry and Physics, Geophysics, Astronomy, and Acoustics, Abundance of Elements in the Earth's Crust and in the Sea, section 14, CRC Press, Boca Raton, Fla, USA, 2005.
  36. L. Hakanson, “An ecological risk index for aquatic pollution control. A sedimentological approach,” Water Research, vol. 14, no. 8, pp. 975–1001, 1980. View at Publisher · View at Google Scholar · View at Scopus
  37. M. I. Yahaya, S. Muhammad, and B. K. Abdullah, “Seasonal variations of heavy metals concentration in abattoir dumping site soil in Nigeria,” Journal of Applied Sciences and Environmental Management, vol. 13, no. 4, pp. 9–13, 2009.
  38. H. Niskavaara, C. Reimann, V. Chekushin, and G. Kashulina, “Seasonal variability of total and easily leachable element contents in topsoils (0–5 cm) from eight catchments in the European Arctic (Finland, Norway and Russia),” Environmental Pollution, vol. 96, no. 2, pp. 261–274, 1997. View at Publisher · View at Google Scholar · View at Scopus
  39. C. Micó, L. Recatalá, M. Peris, and J. Sánchez, “Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis,” Chemosphere, vol. 65, no. 5, pp. 863–872, 2006. View at Publisher · View at Google Scholar · View at Scopus
  40. C. Chukwuma Sr., “Evaluating baseline data for trace elements, pH, organic matter content, and bulk density in agricultural soils in Nigeria,” Water, Air, and Soil Pollution, vol. 86, no. 1–4, pp. 13–34, 1996. View at Publisher · View at Google Scholar · View at Scopus
  41. M. J. Mahanta and K. G. Bhattacharyya, “Total concentrations, fractionation and mobility of heavy metals in soils of urban area of Guwahati, India,” Environmental Monitoring and Assessment, vol. 173, no. 1–4, pp. 221–240, 2011. View at Publisher · View at Google Scholar · View at Scopus
  42. P. Liu, H. J. Zhao, L. L. Wang et al., “Analysis of heavy metal sources for vegetable soils from Shandong Province, China,” Agricultural Sciences in China, vol. 10, no. 1, pp. 109–119, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. S. Wu, S. Zhou, X. Li, T. Jackson, and Q. Zhu, “An approach to partition the anthropogenic and natural components of heavy metal accumulations in roadside agricultural soil,” Environmental Monitoring and Assessment, vol. 173, no. 1–4, pp. 871–881, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. T. Stafilov, R. Šajn, Z. Pančevski, B. Boev, M. V. Frontasyeva, and L. P. Strelkova, “Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia,” Journal of Hazardous Materials, vol. 175, no. 1–3, pp. 896–914, 2010. View at Publisher · View at Google Scholar · View at Scopus
  45. G. M. A. Bermudez, M. Moreno, R. Invernizzi, R. Plá, and M. L. Pignata, “Heavy metal pollution in topsoils near a cement plant: the role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations,” Chemosphere, vol. 78, no. 4, pp. 375–381, 2010. View at Publisher · View at Google Scholar · View at Scopus
  46. K. Sultan, “Distribution of metals and arsenic in soils of Central Victoria (Creswick-Ballarat), Australia,” Archives of Environmental Contamination and Toxicology, vol. 52, no. 3, pp. 339–346, 2007. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Romic and D. Romic, “Heavy metals distribution in agricultural topsoils in urban area,” Environmental Geology, vol. 43, no. 7, pp. 795–805, 2003. View at Scopus
  48. M. G. Yalcin, A. Tumuklu, M. Sonmez, and D. S. Erdag, “Application of multivariate statistical approach to identify heavy metal sources in bottom soil of the Seyhan River (Adana), Turkey,” Environmental Monitoring and Assessment, vol. 164, no. 1–4, pp. 311–322, 2010. View at Publisher · View at Google Scholar · View at Scopus
  49. S. R. Tariq, N. Shaheen, A. Khalique, and M. H. Shah, “Distribution, correlation, and source apportionment of selected metals in tannery effluents, related soils, and groundwater-a case study from Multan, Pakistan,” Environmental Monitoring and Assessment, vol. 166, no. 1–4, pp. 303–312, 2010. View at Publisher · View at Google Scholar · View at Scopus
  50. W. Luo, Y. Lu, J. P. Giesy et al., “Effects of land use on concentrations of metals in surface soils and ecological risk around Guanting Reservoir, China,” Environmental Geochemistry and Health, vol. 29, no. 6, pp. 459–471, 2007. View at Publisher · View at Google Scholar · View at Scopus
  51. S. Maas, R. Scheifler, M. Benslama et al., “Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria,” Environmental Pollution, vol. 158, no. 6, pp. 2294–2301, 2010. View at Publisher · View at Google Scholar · View at Scopus
  52. S. S. Mann, A. W. Rate, and R. J. Gilkes, “Cadmium accumulation in agricultural soils in Western Australia,” Water, Air, and Soil Pollution, vol. 141, no. 1–4, pp. 281–297, 2002. View at Publisher · View at Google Scholar · View at Scopus
  53. C. W. Gray, R. G. McLaren, and A. H. C. Roberts, “Atmospheric accessions of heavy metals to some New Zealand pastoral soils,” Science of the Total Environment, vol. 305, no. 1–3, pp. 105–115, 2003. View at Publisher · View at Google Scholar · View at Scopus
  54. H. M. Chen, Heavy Metals Pollution in Soil and Plant Systems, Science Press, Beijing, China, 1996.
  55. M. J. Sánchez-Martín, M. Sánchez-Camazano, and L. F. Lorenzo, “Cadmium and lead contents in suburban and urban soils from two medium-sized cities of Spain: influence of traffic intensity,” Bulletin of Environmental Contamination and Toxicology, vol. 64, no. 2, pp. 250–257, 2000. View at Publisher · View at Google Scholar · View at Scopus
  56. M. Imperato, P. Adamo, D. Naimo, M. Arienzo, D. Stanzione, and P. Violante, “Spatial distribution of heavy metals in urban soils of Naples city (Italy),” Environmental Pollution, vol. 124, no. 2, pp. 247–256, 2003. View at Publisher · View at Google Scholar · View at Scopus
  57. K. Johansson, B. Bergbäck, and G. Tyler, “Impact of atmospheric long range transport of lead, mercury and cadmium on the Swedish forest environment,” Water, Air, and Soil Pollution, Focus, vol. 1, no. 3-4, pp. 279–297, 2001. View at Publisher · View at Google Scholar
  58. E. Gimeno-García, V. Andreu, and R. Boluda, “Heavy metals incidence in the application of inorganic fertilizers and pesticides to rice farming soils,” Environmental Pollution, vol. 92, no. 1, pp. 19–25, 1996. View at Publisher · View at Google Scholar · View at Scopus
  59. H. Atkinson, G. Giles, and J. Desjardins, “Trace element content of farmyard manure,” Canadian Journal of Agricultural Science, vol. 34, pp. 76–80, 1954.
  60. S. Legros, E. Doelsch, F. Feder et al., “Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical water-soil-plant system,” Agriculture, Ecosystems and Environment, vol. 164, pp. 70–79, 2013. View at Publisher · View at Google Scholar
  61. B. J. Alloway, Soil Processes and the Behaviour of Heavy Metals, 1995.
  62. R. A. Sutherland, “Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii,” Environmental Geology, vol. 39, no. 6, pp. 611–627, 2000. View at Scopus
  63. K. Loska, J. Cebula, J. Pelczar, D. Wiechuła, and J. Kwapuliński, “Use of enrichment, and contamination factors together with geoaccumulation indexes to evaluate the content of Cd, Cu, and Ni in the Rybnik water Reservoir in Poland,” Water, Air, and Soil Pollution, vol. 93, no. 1–4, pp. 347–365, 1997. View at Publisher · View at Google Scholar · View at Scopus