About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 590730, 6 pages
http://dx.doi.org/10.1155/2013/590730
Research Article

Effects of Naked Gold Nanoparticles on Proinflammatory Cytokines mRNA Expression in Rat Liver and Kidney

1Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
2Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia

Received 24 March 2013; Accepted 23 April 2013

Academic Editor: Juergen Buenger

Copyright © 2013 Haseeb A. Khan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. B. Panchapakesan, B. Book-Newell, P. Sethu, M. Rao, and J. Irudayaraj, “Gold nanoprobes for theranostics,” Nanomedicine, vol. 6, pp. 1787–1811, 2011.
  2. D. Pissuwan, T. Niidome, and M. B. Cortie, “The forthcoming applications of gold nanoparticles in drug and gene delivery systems,” Journal of Controlled Release, vol. 149, no. 1, pp. 65–71, 2011. View at Publisher · View at Google Scholar · View at Scopus
  3. A. S. Thakor, J. Jokerst, C. Zavaleta, T. F. Massoud, and S. S. Gambhir, “Gold nanoparticles: a revival in precious metal administration to patients,” Nano Letters, vol. 11, pp. 4029–4036, 2011.
  4. G. E. Craig, S. D. Brown, D. A. Lamprou, D. Graham, and N. J. Wheate, “Cisplatin-tethered gold nanoparticles that exhibit enhanced reproducibility, drug loading, and stability: a step closer to pharmaceutical approval?” Inorganic Chemistry, vol. 51, pp. 3490–3497, 2012.
  5. R. T. Tom, V. Suryanarayanan, P. G. Reddy, S. Baskaran, and T. Pradeep, “Ciprofloxacin-protected gold nanoparticles,” Langmuir, vol. 20, no. 5, pp. 1909–1914, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. B. I. Ipe, S. Mahima, and K. G. Thomas, “Light-induced modulation of self-assembly on spiropyran-capped gold nanoparticles: a potential system for the controlled release of amino acid derivatives,” Journal of the American Chemical Society, vol. 125, no. 24, pp. 7174–7175, 2003. View at Publisher · View at Google Scholar · View at Scopus
  7. N. G. Bastús, E. Sánchez-Tilló, S. Pujals et al., “Peptides conjugated to gold nanoparticles induce macrophage activation,” Molecular Immunology, vol. 46, no. 4, pp. 743–748, 2009. View at Publisher · View at Google Scholar · View at Scopus
  8. K. Song, P. Xu, Y. Meng et al., “Smart gold nanoparticles enhance killing effect on cancer cells,” International Journal of Oncology, vol. 42, no. 2, pp. 597–608, 2012. View at Publisher · View at Google Scholar
  9. C. A. Simpson, J. Salleng K, D. E. Cliffel, and D. L. Feldheim, “In vivo toxicity, biodistribution, and clearance of glutathione-coated gold nanoparticles,” Nanomedicine, vol. 9, pp. 257–263, 2013.
  10. R. Ghosh, L. C. Singh, J. M. Shohet, and P. H. Gunaratne, “A gold nanoparticle platform for the delivery of functional microRNAs into cancer cells,” Biomaterials, vol. 34, pp. 807–816, 2013.
  11. S. Guerrero, J. R. Herance, S. Rojas et al., “Synthesis and in vivo evaluation of the biodistribution of a 18F-labeled conjugate gold-nanoparticle-peptide with potential biomedical application,” Bioconjugate Chemistry, vol. 23, pp. 399–408, 2012.
  12. Arnida, M. M. Janát-Amsbury, A. Ray, C. M. Peterson, and H. Ghandehari, “Geometry and surface characteristics of gold nanoparticles influence their biodistribution and uptake by macrophages,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no. 3, pp. 417–423, 2011. View at Publisher · View at Google Scholar · View at Scopus
  13. T. Niidome, M. Yamagata, Y. Okamoto et al., “PEG-modified gold nanorods with a stealth character for in vivo applications,” Journal of Controlled Release, vol. 114, no. 3, pp. 343–347, 2006. View at Publisher · View at Google Scholar · View at Scopus
  14. X. D. Zhang, D. Wu, X. Shen et al., “Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy,” Biomaterials, vol. 33, pp. 6408–6419, 2012.
  15. W. S. Cho, M. Cho, J. Jeong et al., “Acute toxicity and pharmacokinetics of 13 nm-sized PEG-coated gold nanoparticles,” Toxicology and Applied Pharmacology, vol. 236, no. 1, pp. 16–24, 2009. View at Publisher · View at Google Scholar · View at Scopus
  16. A. S. Thakor, R. Luong, R. Paulmurugan et al., “The fate and toxicity of raman-active silica-gold nanoparticles in mice,” Science Translational Medicine, vol. 3, no. 79, Article ID 79ra33, 2011. View at Publisher · View at Google Scholar · View at Scopus
  17. T. Morais, M. E. Soares, J. A. Duarte, et al., “Effect of surface coating on the biodistribution profile of gold nanoparticles in the rat,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 80, no. 1, pp. 185–193, 2012. View at Publisher · View at Google Scholar
  18. S. Huo, H. Ma, K. Huang et al., “Superior penetration and retention behavior of 50 nm gold nanoparticles in tumors,” Cancer Research, vol. 73, pp. 319–330, 2013.
  19. X. D. Zhang, D. Wu, X. Shen, et al., “Size-dependent in vivo toxicity of PEG-coated gold nanoparticles,” International Journal of Nanomedicine, vol. 6, pp. 2071–2081, 2011. View at Publisher · View at Google Scholar
  20. N. M. Schaeublin, L. K. Braydich-Stolle, E. I. Maurer, et al., “Does shape matter? Bioeffects of gold nanomaterials in a human skin cell model,” Langmuir, vol. 28, pp. 3248–3258, 2012. View at Publisher · View at Google Scholar
  21. Y. S. Chen, Y. C. Hung, I. Liau, and G. S. Huang, “Assessment of the in vivo toxicity of gold nanoparticles,” Nanoscale Research Letters, vol. 4, no. 8, pp. 858–864, 2009. View at Publisher · View at Google Scholar · View at Scopus
  22. H. C. Fischer and W. C. Chan, “Nanotoxicity: the growing need for in vivo study,” Current Opinion in Biotechnology, vol. 18, no. 6, pp. 565–571, 2007. View at Publisher · View at Google Scholar · View at Scopus
  23. M. J. J. Ronis, A. Butura, B. P. Sampey et al., “Effects of N-acetylcysteine on ethanol-induced hepatotoxicity in rats fed via total enteral nutrition,” Free Radical Biology and Medicine, vol. 39, no. 5, pp. 619–630, 2005. View at Publisher · View at Google Scholar · View at Scopus
  24. E. Sadauskas, H. Wallin, M. Stoltenberg et al., “Kupffer cells are central in the removal of nanoparticles from the organism,” Particle and Fibre Toxicology, vol. 4, article 10, 2007. View at Publisher · View at Google Scholar · View at Scopus
  25. S. Hirn, M. Semmler-Behnke, C. Schleh et al., “Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration,” European Journal of Pharmaceutics and Biopharmaceutics, vol. 77, no. 3, pp. 407–416, 2011. View at Publisher · View at Google Scholar · View at Scopus
  26. D. E. Owens and N. A. Peppas, “Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles,” International Journal of Pharmaceutics, vol. 307, no. 1, pp. 93–102, 2006. View at Publisher · View at Google Scholar · View at Scopus
  27. T. Cedervall, I. Lynch, M. Foy et al., “Detailed identification of plasma proteins adsorbed on copolymer nanoparticles,” Angewandte Chemie International Edition, vol. 46, no. 30, pp. 5754–5756, 2007. View at Publisher · View at Google Scholar · View at Scopus
  28. M. Geiser, B. Rothen-Rutishauser, N. Kapp et al., “Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells,” Environmental Health Perspectives, vol. 113, no. 11, pp. 1555–1560, 2005. View at Publisher · View at Google Scholar · View at Scopus
  29. B. M. Rothen-Rutishauser, S. Schürch, B. Haenni, N. Kapp, and P. Gehr, “Interaction of fine particles and nanoparticles with red blood cells visualized with advanced microscopic techniques,” Environmental Science & Technology, vol. 40, no. 11, pp. 4353–4359, 2006.
  30. W. H. De Jong, W. I. Hagens, P. Krystek, M. C. Burger, A. J. A. M. Sips, and R. E. Geertsma, “Particle size-dependent organ distribution of gold nanoparticles after intravenous administration,” Biomaterials, vol. 29, no. 12, pp. 1912–1919, 2008. View at Publisher · View at Google Scholar · View at Scopus
  31. S. K. Balasubramanian, J. Jittiwat, J. Manikandan, C. N. Ong, L. E. Yu, and W. Y. Ong, “Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats,” Biomaterials, vol. 31, no. 8, pp. 2034–2042, 2010. View at Publisher · View at Google Scholar · View at Scopus
  32. G. Sonavane, K. Tomoda, and K. Makino, “Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size,” Colloids and Surfaces B, vol. 66, no. 2, pp. 274–280, 2008. View at Publisher · View at Google Scholar · View at Scopus
  33. Y. N. Sun, C. D. Wang, X. M. Zhang, L. Ren, and X. H. Tian, “Shape dependence of gold nanoparticles on in vivo acute toxicological effects and biodistribution,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 2, pp. 1210–1216, 2011. View at Scopus
  34. C. Lasagna-Reeves, D. Gonzalez-Romero, M. A. Barria et al., “Bioaccumulation and toxicity of gold nanoparticles after repeated administration in mice,” Biochemical and Biophysical Research Communications, vol. 393, no. 4, pp. 649–655, 2010. View at Publisher · View at Google Scholar · View at Scopus
  35. G. Schmid, “The relevance of shape and size of Au55 clusters,” Chemical Society Reviews, vol. 37, no. 9, pp. 1909–1930, 2008. View at Publisher · View at Google Scholar · View at Scopus
  36. E. S. Glazer, C. Zhu, A. N. Hamir, A. Borne, C. S. Thompson, and S. A. Curley, “Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model,” Nanotoxicology, vol. 5, pp. 459–468, 2011.
  37. R. Shukla, V. Bansal, M. Chaudhary, A. Basu, R. R. Bhonde, and M. Sastry, “Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview,” Langmuir, vol. 21, no. 23, pp. 10644–10654, 2005. View at Publisher · View at Google Scholar · View at Scopus
  38. Q. Zhang, V. M. Hitchins, A. M. Schrand, S. M. Hussain, and P. L. Goering, “Uptake of gold nanoparticles in murine macrophage cells without cytotoxicity or production of pro-inflammatory mediators,” Nanotoxicology, vol. 5, pp. 284–295, 2011.
  39. C. L. Villiers, H. Freitas, R. Couderc, M. B. Villiers, and P. N. Marche, “Analysis of the toxicity of gold nano particles on the immune system: effect on dendritic cell functions,” Journal of Nanoparticle Research, vol. 12, no. 1, pp. 55–60, 2010. View at Publisher · View at Google Scholar · View at Scopus
  40. H. J. Yen, S. H. Hsu, and C. L. Tsai, “Cytotoxicity and immunological response of gold and silver nanoparticles of different sizes,” Small, vol. 5, no. 13, pp. 1553–1561, 2009. View at Publisher · View at Google Scholar · View at Scopus
  41. J. Tournebize, A. Boudier, O. Joubert et al., “Impact of gold nanoparticle coating on redox homeostasis,” International Journal of Pharmaceutics, vol. 438, pp. 107–116, 2012.
  42. Y. Pan, S. Neuss, A. Leifert et al., “Size-dependent cytotoxicity of gold nanoparticles,” Small, vol. 3, no. 11, pp. 1941–1949, 2007. View at Publisher · View at Google Scholar · View at Scopus