About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 595873, 13 pages
http://dx.doi.org/10.1155/2013/595873
Review Article

Contrast Enhanced Ultrasound of the Kidneys: What Is It Capable of?

Radiology Department, Evangelismos Hospital, 45-47 Ypsilantou Street, 10676 Athens, Greece

Received 29 April 2013; Revised 22 September 2013; Accepted 30 September 2013

Academic Editor: Michael Froehner

Copyright © 2013 Demosthenes D. Cokkinos et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. S. H. X. Morin, A. K. P. Lim, J. F. L. Cobbold, and S. D. Taylor-Robinson, “Use of second generation contrast-enhanced ultrasound in the assessment of focal liver lesions,” World Journal of Gastroenterology, vol. 13, no. 45, pp. 5963–5970, 2007. View at Publisher · View at Google Scholar · View at Scopus
  2. M. Brannigan, P. N. Burns, and S. R. Wilson, “Blood flow patterns in focal liver lesions at microbubble-enhanced US,” Radiographics, vol. 24, no. 4, pp. 921–935, 2004. View at Scopus
  3. V. Uhlendorf, F.-D. Scholle, and M. Reinhardt, “Acoustic behaviour of current ultrasound contrast agents,” Ultrasonics, vol. 38, no. 1, pp. 81–86, 2000. View at Publisher · View at Google Scholar · View at Scopus
  4. D. Cosgrove and M. Blomley, “Liver tumors: evaluation with contrast-enhanced ultrasound,” Abdominal Imaging, vol. 29, no. 4, pp. 446–454, 2004. View at Scopus
  5. M. Claudon, C. F. Dietrich, B. I. Choi, et al., “Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) in the liver-update 2012: a WFUMB-EFSUMB initiative in cooperation with representatives of AFSUMB, AIUM, ASUM, FLAUS and ICUS,” Ultrasound in Medicine and Biology, vol. 39, no. 2, pp. 11–29, 2013. View at Publisher · View at Google Scholar
  6. EFSUMB study group, “Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS)—update 2008,” Ultraschall in der Medizin, vol. 29, no. 4, pp. 28–44, 2008. View at Scopus
  7. P. N. Burns, S. R. Wilson, and D. H. Simpson, “Pulse inversion imaging of liver blood flow: improved method for characterizing focal masses with microbubble contrast,” Investigative Radiology, vol. 35, no. 1, pp. 58–71, 2000. View at Publisher · View at Google Scholar · View at Scopus
  8. S. R. Wilson and P. N. Burns, “Microbubble-enhanced US in body imaging: what role?” Radiology, vol. 257, no. 1, pp. 24–39, 2010. View at Publisher · View at Google Scholar · View at Scopus
  9. D. W. Kitzman, M. E. Goldman, L. D. Gillam, J. L. Cohen, G. P. Aurigemma, and J. S. Gottdiener, “Efficacy and safety of the novel ultrasound contrast agent perflutren (definity) in patients with suboptimal baseline left ventricular echocardiographic images,” The American Journal of Cardiology, vol. 86, no. 6, pp. 669–674, 2000. View at Publisher · View at Google Scholar · View at Scopus
  10. F. Piscaglia, L. Bolondi, and Italian Society for Ultrasound in Medicine and Biology (SIUMB) Study Group on Ultrasound Contrast Agents, “The safety of Sonovue in abdominal applications: retrospective analysis of 23188 investigations,” Ultrasound in Medicine and Biology, vol. 32, no. 9, pp. 1369–1375, 2006. View at Publisher · View at Google Scholar · View at Scopus
  11. International Collaborative Study of Severe Anaphylaxis, “Risk of anaphylaxis in a hospital population in relation to the use of various drugs: an international study,” Pharmacoepidemiology and Drug Safety, vol. 12, no. 3, pp. 195–202, 2003. View at Publisher · View at Google Scholar
  12. S. T. Cochran, K. Bomyea, and J. W. Sayre, “Trends in adverse events after IV administration of contrast media,” American Journal of Roentgenology, vol. 176, no. 6, pp. 1385–1388, 2001. View at Scopus
  13. M. L. Main, J. H. Goldman, and P. A. Grayburn, “Thinking outside the “Box”-the ultrasound contrast controversy,” Journal of the American College of Cardiology, vol. 50, no. 25, pp. 2434–2437, 2007. View at Publisher · View at Google Scholar · View at Scopus
  14. J.-M. Correas, M. Claudon, F. Tranquart, and O. Hélénon, “The kidney: imaging with microbubble contrast agents,” Ultrasound Quarterly, vol. 22, no. 1, pp. 53–66, 2006. View at Scopus
  15. F. Piscaglia, C. Nolsøe, C. F. Dietrich et al., “The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications,” Ultraschall in der Medizin, vol. 33, no. 1, pp. 33–59, 2012. View at Publisher · View at Google Scholar · View at Scopus
  16. A. Nilsson, “Contrast-enhanced ultrasound of the kidneys,” European Radiology, vol. 14, no. 8, pp. P104–P109, 2004. View at Publisher · View at Google Scholar · View at Scopus
  17. C. Roy, L. Gengler, B. Sauer, and H. Lang, “Role of contrast enhanced US in the evaluation of renal tumors,” Journal de Radiologie, vol. 89, no. 11, pp. 1735–1744, 2008. View at Publisher · View at Google Scholar · View at Scopus
  18. E. Quaia, S. Siracusano, M. Bertolotto, M. Monduzzi, and R. P. Mucelli, “Characterization of renal tumours with pulse inversion harmonic imaging by intermittent high mechanical index technique: initial results,” European Radiology, vol. 13, no. 6, pp. 1402–1412, 2003. View at Scopus
  19. A. Ignee, B. Straub, D. Brix, G. Schuessler, M. Ott, and C. F. Dietrich, “The value of contrast enhanced ultrasound (CEUS) in the characterisation of patients with renal masses,” Clinical Hemorheology and Microcirculation, vol. 46, no. 4, pp. 275–290, 2010. View at Publisher · View at Google Scholar · View at Scopus
  20. H. Tamai, Y. Takiguchi, M. Oka et al., “Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors,” Journal of Ultrasound in Medicine, vol. 24, no. 12, pp. 1635–1640, 2005. View at Scopus
  21. B. K. Park, B. Kim, S. H. Kim, K. Ko, H. M. Lee, and H. Y. Choi, “Assessment of cystic renal masses based on Bosniak classification: comparison of CT and contrast-enhanced US,” European Journal of Radiology, vol. 61, no. 2, pp. 310–314, 2007. View at Publisher · View at Google Scholar · View at Scopus
  22. D.-A. Clevert, N. Minaifar, S. Weckbach et al., “Multislice computed tomography versus contrast-enhanced ultrasound in evaluation of complex cystic renal masses using the Bosniak classification system,” Clinical Hemorheology and Microcirculation, vol. 39, no. 1–4, pp. 171–178, 2008. View at Publisher · View at Google Scholar · View at Scopus
  23. E. Quaia, M. Bertolotto, V. Cioffi et al., “Comparison of contrast-enhanced sonography with unenhanced sonography and contrast-enhanced CT in the diagnosis of malignancy in complex cystic renal masses,” American Journal of Roentgenology, vol. 191, no. 4, pp. 1239–1249, 2008. View at Publisher · View at Google Scholar · View at Scopus
  24. O. Hélénon, J. M. Correas, C. Balleyguier, M. Ghouadni, and F. Cornud, “Ultrasound of renal tumors,” European Radiology, vol. 11, no. 10, pp. 1890–1901, 2001. View at Publisher · View at Google Scholar · View at Scopus
  25. G. M. Israel and M. A. Bosniak, “Follow-up CT of moderately complex cystic lesions of the kidney (Bosniak category IIF),” American Journal of Roentgenology, vol. 181, no. 3, pp. 627–633, 2003. View at Scopus
  26. G. M. Israel and M. A. Bosniak, “An update of the Bosniak renal cyst classification system,” Urology, vol. 66, no. 3, pp. 484–488, 2005. View at Publisher · View at Google Scholar · View at Scopus
  27. G. M. Israel and M. A. Bosniak, “How I do it: evaluating renal masses,” Radiology, vol. 236, no. 2, pp. 441–450, 2005. View at Publisher · View at Google Scholar · View at Scopus
  28. B. Kreft and H. H. Schild, “Cystic renal lesions,” Rofo Fortschritte auf dem Gebiet der Rontgenstrahlen und der Bildgebenden Verfahren, vol. 175, no. 7, pp. 892–903, 2003. View at Publisher · View at Google Scholar · View at Scopus
  29. M. A. Bosniak, “The current radiological approach to renal cysts,” Radiology, vol. 158, no. 1, pp. 1–10, 1986. View at Scopus
  30. M. A. Bosniak, “Commentary: difficulties in classifying cystic lesions of the kidney,” Urologic Radiology, vol. 13, no. 2, pp. 91–93, 1991. View at Scopus
  31. D. S. Hartman, P. L. Choyke, and M. S. Hartman, “From the RSNA refresher courses: a practical approach to the cystic renal mass,” Radiographics, vol. 24, supplement 1, pp. S101–S115, 2004. View at Scopus
  32. M. A. Bosniak, “Problems in the radiologic diagnosis of renal parenchymal tumors,” Urologic Clinics of North America, vol. 20, no. 2, pp. 217–230, 1993. View at Scopus
  33. G. M. Israel, N. Hindman, and M. A. Bosniak, “Evaluation of cystic renal masses: comparison of CT and MR imaging by using the Bosniak classification system,” Radiology, vol. 231, no. 2, pp. 365–371, 2004. View at Publisher · View at Google Scholar · View at Scopus
  34. O. Benjaminov, M. Atri, M. O'Malley, K. Lobo, and G. Tomlinson, “Enhancing component on CT to predict malignancy in cystic renal masses and interobserver agreement of different CT features,” American Journal of Roentgenology, vol. 186, no. 3, pp. 665–672, 2006. View at Publisher · View at Google Scholar · View at Scopus
  35. C. Roy, J. Jeantroux, S. Tétékpor, and V. Lindner, “Tumeurs du rein,” Journal de Radiologie, vol. 87, no. 9, pp. 1025–1055, 2006 (French). View at Publisher · View at Google Scholar
  36. M. L. Robbin, “Ultrasound contrast agents: a promising future,” Radiologic Clinics of North America, vol. 39, no. 3, pp. 399–414, 2001. View at Publisher · View at Google Scholar · View at Scopus
  37. M. L. Robbin, M. E. Lockhart, and R. G. Barr, “Renal imaging with ultrasound contrast: current status,” Radiologic Clinics of North America, vol. 41, no. 5, pp. 963–978, 2003. View at Publisher · View at Google Scholar · View at Scopus
  38. G. Ascenti, S. Mazziotti, G. Zimbaro et al., “Complex cystic renal masses: characterization with contrast-enhanced US,” Radiology, vol. 243, no. 1, pp. 158–165, 2007. View at Publisher · View at Google Scholar · View at Scopus
  39. J.-M. Correas, M. Claudon, F. Tranquart, and O. Hélénon, “The kidney: imaging with microbubble contrast agents,” Ultrasound Quarterly, vol. 22, no. 1, pp. 53–66, 2006. View at Scopus
  40. G. Ascenti, M. Gaeta, C. Magno et al., “Contrast-enhanced second-harmonic sonography in the detection of pseudocapsule in renal cell carcinoma,” American Journal of Roentgenology, vol. 182, no. 6, pp. 1525–1530, 2004. View at Scopus
  41. A. Y. Kim, S. H. Kim, Y. J. Kim, and I. H. Lee, “Contrast-enhanced power Doppler sonography for the differentiation of cystic renal lesions: preliminary study,” Journal of Ultrasound in Medicine, vol. 18, no. 9, pp. 581–588, 1999. View at Scopus
  42. C. Nicolau, L. Bunesch, and C. Sebastia, “Renal complex cysts in adults: contrast-enhanced ultrasound,” Abdominal Imaging, vol. 36, no. 6, pp. 742–752, 2011. View at Publisher · View at Google Scholar · View at Scopus
  43. O. Graumann, S. S. Osther, and P. J. S. Osther, “Characterization of complex renal cysts: a critical evaluation of the Bosniak classification,” Scandinavian Journal of Urology and Nephrology, vol. 45, no. 2, pp. 84–90, 2011. View at Publisher · View at Google Scholar · View at Scopus
  44. E. Quaia, R. Bussani, M. Cova, and R. P. Mucelli, “Radiologic-pathologic correlations of intratumoral tissue components in the most common solid and cystic renal tumors: pictorial review,” European Radiology, vol. 15, no. 8, pp. 1734–1744, 2005. View at Publisher · View at Google Scholar · View at Scopus
  45. C. L. Siegel, E. G. McFarland, J. A. Brink, A. J. Fisher, P. Humphrey, and J. P. Heiken, “CT of cystic renal masses: analysis of diagnostic performance and interobserver variation,” American Journal of Roentgenology, vol. 169, no. 3, pp. 813–818, 1997. View at Scopus
  46. M. Bertolotto, A. Martegani, L. Aiani, R. Zappetti, S. Cernic, and M. A. Cova, “Value of contrast-enhanced ultrasonography for detecting renal infarcts proven by contrast enhanced CT. A feasibility study,” European Radiology, vol. 18, no. 2, pp. 376–383, 2008. View at Publisher · View at Google Scholar · View at Scopus
  47. M. Bertolotto and O. Catalano, “Contrast-enhanced ultrasound: past, present, and future,” Ultrasound Clinics, vol. 4, no. 3, pp. 339–367, 2009. View at Publisher · View at Google Scholar · View at Scopus
  48. K.-H. Kretschmer, K. Bohndorf, and O. Pohlenz, “The role of sonography in abdominal trauma: the European experience,” Emergency Radiology, vol. 4, no. 2, pp. 62–67, 1997. View at Publisher · View at Google Scholar · View at Scopus
  49. H. Yoshii, M. Sato, S. Yamamoto et al., “Usefulness and limitations of ultrasonography in the initial evaluation of blunt abdominal trauma,” Journal of Trauma, vol. 45, no. 1, pp. 45–51, 1998. View at Publisher · View at Google Scholar · View at Scopus
  50. M. A. Healey, R. K. Simons, R. J. Winchell et al., “A prospective evaluation of abdominal ultrasound in blunt trauma: is it useful?” Journal of Trauma, vol. 40, no. 6, pp. 875–883, 1996. View at Scopus
  51. T. M. Scalea, A. Rodriguez, W. C. Chiu et al., “Focused assessment with sonography for trauma (FAST): results from an international consensus conference,” Journal of Trauma, vol. 46, no. 3, pp. 466–472, 1999. View at Scopus
  52. W. S. Pearl and K. H. Todd, “Ultrasonography for the initial evaluation of blunt abdominal trauma: a review of prospective trials,” Annals of Emergency Medicine, vol. 27, no. 3, pp. 353–361, 1996. View at Publisher · View at Google Scholar · View at Scopus
  53. W. C. Chiu, B. M. Cushing, A. Rodriguez et al., “Abdominal injuries without hemoperitoneum: a potential limitation of focused abdominal sonography for trauma (FAST),” Journal of Trauma, vol. 42, no. 4, pp. 617–625, 1997. View at Scopus
  54. K. Shanmuganathan, S. E. Mirvis, C. D. Sherbourne, W. C. Chiu, and A. Rodriguez, “Hemoperitoneum as the sole indicator of abdominal visceral injuries: a potential limitation of screening abdominal US for trauma,” Radiology, vol. 212, no. 2, pp. 423–430, 1999. View at Scopus
  55. L. Thorelius, “Emergency real-time contrast-enhanced ultrasonography for detection of solid organ injuries,” European Radiology, vol. 17, no. 6, pp. F107–F112, 2007. View at Publisher · View at Google Scholar · View at Scopus
  56. D. Cokkinos, E. Antypa, K. Stefanidis et al., “Contrast-enhanced ultrasound for imaging blunt abdominal trauma—indications, description of the technique and imaging review,” Ultraschall in der Medizin, vol. 33, no. 1, pp. 60–67, 2012. View at Publisher · View at Google Scholar · View at Scopus
  57. M. Valentino, L. Ansaloni, F. Catena, P. Pavlica, A. D. Pinna, and L. Barozzi, “Contrast-enhanced ultrasonography in blunt abdominal trauma: considerations after 5 years of experience,” Radiologia Medica, vol. 114, no. 7, pp. 1080–1093, 2009. View at Publisher · View at Google Scholar · View at Scopus
  58. A. Afaq, C. Harvey, Z. Aldin, E. Leen, and D. Cosgrove, “Contrast-enhanced ultrasound in abdominal trauma,” European Journal of Emergency Medicine, vol. 19, no. 3, pp. 140–145, 2011. View at Publisher · View at Google Scholar · View at Scopus
  59. D. D. Cokkinos, E. Antypa, I. Kalogeropoulos, et al., “Contrast enhanced ultrasound performed under urgent conditions. Indications, review of the technique, clinical examples and limitations,” Insights Into Imaging, vol. 4, no. 2, pp. 185–198, 2013. View at Publisher · View at Google Scholar
  60. M. Valentino, C. Serra, G. Zironi, C. de Luca, P. Pavlica, and L. Barozzi, “Blunt abdominal trauma: emergency contrast-enhanced sonography for detection of solid organ injuries,” American Journal of Roentgenology, vol. 186, no. 5, pp. 1361–1367, 2006. View at Publisher · View at Google Scholar · View at Scopus
  61. J. Blebea, R. Zickler, N. Volteas et al., “Duplex imaging of the renal arteries with contrast enhancement,” Vascular and Endovascular Surgery, vol. 37, no. 6, pp. 429–436, 2003. View at Publisher · View at Google Scholar · View at Scopus
  62. A. Ignee, B. Straub, G. Schuessler, et al., “Contrast enhanced ultrasound of renal masses,” World Journal of Radiology, vol. 2, pp. 15–31, 2010.
  63. C. Hoeffel, M. Pousset, M.-O. Timsit et al., “Radiofrequency ablation of renal tumours: diagnostic accuracy of contrast-enhanced ultrasound for early detection of residual tumour,” European Radiology, vol. 20, no. 8, pp. 1812–1821, 2010. View at Publisher · View at Google Scholar · View at Scopus
  64. M. F. Meloni, M. Bertolotto, C. Alberzoni et al., “Follow-up after percutaneous radiofrequency ablation of renal cell carcinoma: contrast-enhanced sonography versus contrast-enhanced CT or MRI,” American Journal of Roentgenology, vol. 191, no. 4, pp. 1233–1238, 2008. View at Publisher · View at Google Scholar · View at Scopus
  65. E. Leen, S. J. Moug, and P. Horgan, “Potential impact and utilization of ultrasound contrast media,” European Radiology, vol. 14, no. 8, pp. P16–P24, 2004. View at Publisher · View at Google Scholar · View at Scopus
  66. U. S. Food and Drug Administration 2008, Micro-Bubble Contrast Agents (Marketed as Definity (Perflutren Lipid Microsphere) Injectable Suspension and Optison (Perflutren Protein-Type sMicrospheres for Injection), US Food and Drug Administration, Silver Spring, Md, USA, 2008, http://www.fda.gov/Safety/MedWatch/SafetyInformation/SafetyAlertsforHumanMedicalProducts/ucm092270.htm.
  67. Health Canada, “Updated safety information on definity (perflutren injectable suspension),” Ontario, Canada, 2008, http://www.hc-sc.gc.ca/dhp-mps/medeff/advisories-avis/prof/_ 2008/definity_hpc-cps_2-eng.php.