About this Journal Submit a Manuscript Table of Contents
BioMed Research International
Volume 2013 (2013), Article ID 596380, 6 pages
http://dx.doi.org/10.1155/2013/596380
Research Article

Purification and Characterization of Tannin Acyl Hydrolase Produced by Mixed Solid State Fermentation of Wheat Bran and Marigold Flower by Penicillium notatum NCIM 923

1Department of Microbiology, Vijaygarh Jyotish Ray College, Kolkata 700032, West Bengal, India
2Department of Food Technology and Biochemical Engineering, Jadavpur University, Kolkata 700032, West Bengal, India

Received 29 April 2013; Accepted 27 September 2013

Academic Editor: Stelvio M. Bandiera

Copyright © 2013 Saswati Gayen and Uma Ghosh. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Linked References

  1. K. Mahapatra, R. K. Nanda, S. S. Bag, R. Banerjee, A. Pandey, and G. Szakacs, “Purification, characterization and some studies on secondary structure of tannase from Aspergillus awamori nakazawa,” Process Biochemistry, vol. 40, no. 10, pp. 3251–3254, 2005. View at Publisher · View at Google Scholar · View at Scopus
  2. G. Mukherjee and R. Banerjee, “Effects of temperature, pH and additives on the activity of tannase produced by a co-culture of Rhizopus oryzae and Aspergillus foetidus,” World Journal of Microbiology and Biotechnology, vol. 22, no. 3, pp. 207–212, 2006. View at Publisher · View at Google Scholar · View at Scopus
  3. K. Murugan, S. Saravanababu, and M. Arunachalam, “Screening of tannin acyl hydrolase (E.C.3.1.1.20) producing tannery effluent fungal isolates using simple agar plate and SmF process,” Bioresource Technology, vol. 98, no. 4, pp. 946–949, 2007. View at Publisher · View at Google Scholar · View at Scopus
  4. I. Vaquero, A. Marcobal, and R. Muñoz, “Tannase activity by lactic acid bacteria isolated from grape must and wine,” International Journal of Food Microbiology, vol. 96, no. 2, pp. 199–204, 2004. View at Publisher · View at Google Scholar · View at Scopus
  5. R. Belmares, J. C. Contreras-Esquivel, R. Rodríguez-Herrera, A. R. Coronel, and C. N. Aguilar, “Microbial production of tannase: an enzyme with potential use in food industry,” Food Science and Technology, vol. 37, no. 8, pp. 857–864, 2004. View at Publisher · View at Google Scholar · View at Scopus
  6. J. S. Purohit, J. R. Dutta, R. K. Nanda, and R. Banerjee, “Strain improvement for tannase production from co-culture of Aspergillus foetidus and Rhizopus oryzae,” Bioresource Technology, vol. 97, no. 6, pp. 795–801, 2006. View at Publisher · View at Google Scholar · View at Scopus
  7. V. Battestin, G. Macedo, and P. Pastore, “Optimizing the fermentation broth for tannase production by a new isolated strain Paecilomyces variotii,” Journal of Technology, vol. 118, p. S49, 2005.
  8. K. Aoki, R. Shinke, and H. Nishira, “Purification and some properties of yeast tannase,” Agriculture Biology Chemistry, vol. 40, pp. 79–85, 1976.
  9. S. Gayen and U. Ghosh, “Utilization of agri-horticultural wastes for production of tannase enzyme using Penicillium notatum NCIM 923 by solid state fermentation,” Journal of Mycopathological Research, vol. 46, no. 2, pp. 276–270, 2008.
  10. S. Iibuchi, Y. Minoda, and K. Yamada, “Studies on acyl hydrolase of microorganisms: a new method determining the enzyme activity using the change of ultraviolet absorption,” Agriculture Biology Chemistry, vol. 31, pp. 513–518, 1966.
  11. O. H. Lowry, N. J. Rosebrough, A. L. Farr, and R. J. Randall, “Protein measurement with the Folin-phenol reagent,” Journal of Biological Chemistry, vol. 48, pp. 17–25, 1951.
  12. S. Englard and S. Seifter, “Precipitation techniques,” Methods in Enzymology, vol. 182, pp. 285–300, 1990. View at Publisher · View at Google Scholar · View at Scopus
  13. U. K. Laemmli, “Cleavage of structural proteins during the assembly of the head of bacteriophage T4,” Nature, vol. 227, no. 5259, pp. 680–685, 1970. View at Publisher · View at Google Scholar · View at Scopus
  14. K. Sivashanmugam and G. Jayaraman, “Production and partial purification of extracellular tannase by Klebsiella pneumoniae MTCC 7162 isolated from tannery effluent,” African Journal of Biotechnology, vol. 10, no. 8, pp. 1364–1374, 2011. View at Scopus
  15. M. Kasieczka-Burnecka, K. Kuc, H. Kalinowska, M. Knap, and M. Turkiewicz, “Purification and characterization of two cold-adapted extracellular tannin acyl hydrolases from an Antarctic strain Verticillium sp. P9,” Applied Microbiology and Biotechnology, vol. 77, no. 1, pp. 77–89, 2007. View at Publisher · View at Google Scholar · View at Scopus
  16. V. Battestin and G. A. Macedo, “Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii,” Electronic Journal of Biotechnology, vol. 10, no. 2, pp. 191–199, 2007. View at Publisher · View at Google Scholar · View at Scopus
  17. H. Lineweaver and D. Burk, “The determination of enzyme dissociation constants,” Journal of the American Chemical Society, vol. 56, no. 3, pp. 658–666, 1934. View at Scopus
  18. G. S. Rajakumar and S. C. Nandy, “Isolation purification and some properties of Penicillium chrysogenum tannase,” Applied Environmental Microbiology, vol. 46, no. 2, pp. 525–527, 1983.
  19. H. S. Hamdy, “Purification and characterisation of a newly isolated stable long-life Tannase produced by F. subglutinans,” Journal of Pharmaceutical Innovation, vol. 3, no. 3, pp. 142–151, 2008. View at Publisher · View at Google Scholar · View at Scopus
  20. A. Sabu, G. S. Kiran, and A. Pandey, “Purification and characterization of tannin acyl hydrolase from Aspergillus niger ATCC 16620,” Food Technology and Biotechnology, vol. 43, no. 2, pp. 133–138, 2005. View at Scopus
  21. R. Paranthaman, R. Vidyalakshmi, S. Murugesh, and K. Singaravadivel, “Optimization of fermentation conditions for production of tannase enzyme by Aspergillus oryzae using sugarcane baggasse and rice straw,” Global Journal of Biotechology and Biochememistry, vol. 3, pp. 105–110, 2008.
  22. V. Chhokar, M. Sangwan, V. Beniwal, K. Nehra, and K. S. Nehra, “Effect of additives on the activity of tannase from Aspergillus awamori MTCC9299,” Applied Biochemistry and Biotechnology, vol. 160, no. 8, pp. 2256–2264, 2010. View at Publisher · View at Google Scholar · View at Scopus
  23. B. Mahendran, N. Raman, and D.-J. Kim, “Purification and characterization of tannase from Paecilomyces variotii: hydrolysis of tannic acid using immobilized tannase,” Applied Microbiology and Biotechnology, vol. 70, no. 4, pp. 444–450, 2006. View at Publisher · View at Google Scholar · View at Scopus
  24. M. A. Ramírez-Coronel, G. Viniegra-González, A. Darvill, and C. Augur, “A novel tannase from Aspergillus niger with β-glucosidase activity,” Microbiology, vol. 149, no. 10, pp. 2941–2946, 2003. View at Scopus
  25. C. N. Aguilar and G. Gutiérrez-Sánchez, “Sources, properties, applications and potential uses of tannin acyl hydrolase,” Food Science and Technology International, vol. 7, no. 5, pp. 373–382, 2001. View at Scopus
  26. O. Hatamoto, T. Watarai, M. Kikuchi, K. Mizusawa, and H. Sekine, “Cloning and sequencing of the gene encoding tannase and a structural study of the tannase subunit from Aspergillus oryzae,” Gene, vol. 175, no. 1-2, pp. 215–221, 1996. View at Publisher · View at Google Scholar · View at Scopus
  27. R. Bhardwaj, B. Singh, and T. K. Bhat, “Purification and characterization of tannin acyl hydrolase from Aspergillus niger MTCC 2425,” Journal of Basic Microbiology, vol. 43, no. 6, pp. 449–461, 2003. View at Publisher · View at Google Scholar · View at Scopus
  28. P. K. Lekha and B. K. Lonsane, “Production and application of tannin acyl hydrolsase: state of the art,” Advances in Applied Microbiology, vol. 44, pp. 215–260, 1997. View at Scopus
  29. S. Ibichi, Y. Monida, and K. Yamada, “Studies on tannin acyl hydrolase of microorganisms. Part III: purification of enzyme and some properties of it,” Agriculture Biology Chemistry, vol. 32, pp. 803–809, 1968.
  30. G. M. Farias, C. Gorbea, J. R. Elkins, and G. J. Griffin, “Purification, characterization, and substrate relationships of the tannase from Cryphonectria parasitica,” Physiological and Molecular Plant Pathology, vol. 44, no. 1, pp. 51–63, 1994. View at Scopus
  31. N. H. Nadaf and J. S. Ghosh, “Production, purification and characterization of tannase from Rhodococcus NCIM, 2891,” Current Research Journal of Biological Science, vol. 3, no. 3, pp. 246–253, 2011.